2.1 Killing form

1. Prove that the Killing form of a nilpotent Lie algebra L is identically zero.
2. Prove that a Lie algebra L is solvable iff the radical of its Killing form contains $[L, L]$.
3. Let L be the three dimensional solvable Lie algebra with basis $\{x, y, z\}$:

$$
[x, y]=z, \quad[x, z]=y, \quad[y, z]=0
$$

Compute the radical of its Killing form.
4. Relative to the standard basis of $\mathfrak{s l}(3, F)$, compute the determinant of κ. Which primes divide it?
5. Let $L=L_{1} \oplus \cdots \oplus L_{t}$ be the decomposition of a semisimple Lie algebra L into its simple ideals. Show that the semisimple and nilpotent parts of $x \in L$ are the sums of the semisimple and nilpotent parts in the various L_{i} of the components of x.
2.2 Complete reducibility of representations

1. Let V be an L-module. Prove that V is a direct sum of irreducible submodules if and only if each L-submodule W of V possesses a complement L-submodule W^{\prime} such that $V=W \oplus W^{\prime}$.
2. Prove the every irreducible representation of a solvable Lie algebra L over \mathbf{C} is one dimensional.
3. Let V be an L-module. Show that the dual space V^{*} is an L-module in the way that for $x \in L, f \in V^{*}, v \in V$,

$$
(x . f)(v):=-f(x . v) .
$$

4. Let V and W be L-modules. Show that the tensor product space $V \otimes W$ is an L-module in the way that for any $x \in L, v \in V$ and $w \in W$,

$$
x .(v \otimes w):=x . v \otimes w+v \otimes x . w .
$$

5. Let V and W be L-modules.
(a) Show that the map $\Psi: V^{*} \otimes W \rightarrow \operatorname{Hom}(V, W)$ defined on the typical generators

$$
\Psi(\delta \otimes w)(v):=\delta(v) w, \quad \delta \in V^{*}, w \in W, v \in V
$$

is an isomorphism of vector spaces.
(b) Show that $\operatorname{Hom}(V, W)$ with the following L-action is an L-module:

$$
(x . f)(v)=x . f(v)-f(x . v), \quad x \in L, f \in \operatorname{Hom}(V, W), v \in V .
$$

6. Consider the derivations of a reductive Lie algebra $L=Z(L) \oplus[L, L]$. Let $\delta \in \operatorname{Der} L$ be arbitrary.
(a) Show that $\delta([L, L]) \subset[L, L]$, and there is $x \in[L, L]$ such that $\left.\delta\right|_{[L, L]}=\left.\operatorname{ad} x\right|_{[L, L]}$.
(b) Show that $\delta(Z(L)) \subset Z(L)$, and every $\phi \in \operatorname{End}(L)$ with $\operatorname{Im} \phi \subset Z(L)$ and $\operatorname{Ker} \phi \supset$ $[L, L]$ is in $\operatorname{Der} L$.
(c) Show by (a) and (b) that $\operatorname{Der} L=\operatorname{End}(Z(L)) \oplus \operatorname{ad} L$.
2.3 Representation of $\mathfrak{s l}(2, F)$: let $L:=\mathfrak{s l}(2, F)$, with F algebraically closed and $\operatorname{char}(F)=0$.
7. For any $m \in \mathbf{N}$, prove that the $(m+1)$ dimensional L-module $V(m)$ is irreducible. (Hint: first show that every L-submodule of $V(m)$ must be spanned by some weight spaces.)
8. Suppose a finite dimensional L-module V is decomposed into a direct sum of irreducible submodules: $V \simeq \sum_{m \in \mathbf{N}} a_{m} V(m)$, where each $a_{m} \in \mathbf{N}$. Show that:
(a) the total number of irreducible summands is

$$
\sum_{m \in \mathbf{N}} a_{m}=\operatorname{dim} V_{0}+\operatorname{dim} V_{1} ;
$$

(b) for $m \in \mathbf{N}$, the number of copies of $V(m)$ in V is

$$
a_{m}=\operatorname{dim} V_{m}-\operatorname{dim} V_{m+2} .
$$

3. $M=\mathfrak{s l}(3, F)$ contains a copy of L in its upper left-hand 2×2 position. Write M explicitly as direct sum of irreducible L-submodules (M viewed as L-module via the adjoint representation): $V(0) \oplus V(1) \oplus V(1) \oplus V(2)$.
4. Decompose the tensor product of the two L-modules $V(3), V(7)$ into the sum of irreducible submodules: $V(4) \oplus V(6) \oplus V(8) \oplus V(10)$. Try to develop a general formula for the decomposition of $V(m) \otimes V(n)$.
5. The irreducible representation of L of highest weight m can also be realized "naturally", as follows. Let X, Y be a basis for the two dimensional vector space F^{2}, on which L acts as usual. Let $F[X, Y]$ be the polynomial algebra in two variables, and extend the action of L to $F[X, Y]$ by the derivation rule: $z . f g=(z . f) g+f(z . g)$, for $z \in L$, $f, g \in F[X, Y]$. Show that this extension is well defined and that $F[X, Y]$ becomes an L-module. Then show that the subspace of homogeneous polynomials of degree m, with basis $X^{m}, X^{m-1} Y, \cdots, X Y^{m-1}, Y^{m}$, is invariant under L and irreducible of highest weight m.

2.4 Root space decomposition

1. Suppose V is a finite dimensional vector space over \mathbf{C}. Let $\mathcal{S} \subseteq$ End (V) be a commuting family of semisimple endomorphisms. Prove that the endomorphisms in \mathcal{S} are simultaneously diagonalizable. [Hint: Let $\left\{h_{1}, h_{2}, \cdots, h_{m}\right\}$ be a maximal linearly independent subset of \mathcal{S}. Then V is a direct sum of eigenspaces V_{λ} of h_{m} associate to eigenvalues λ. Show that every $h \in \mathcal{S}$ acts invariantly on each V_{λ}. Then proceed the induction on m.]
2. For each classical linear Lie algebra of types $A_{\ell}, B_{\ell}, C_{\ell}, D_{\ell}$, determine the roots and root spaces.
3. Show that all Cartan integers of $\mathfrak{s l}(\ell+1, F)$ are $0, \pm 1$.
4. Compute the basis of $\mathfrak{s l}(\ell+1, \mathrm{~F})$ which is dual (via the Killing form κ) to the standard basis $\left\{h_{i} \mid i \in[\ell]\right\} \cup\left\{e_{i j} \mid i, j \in[\ell+1], i \neq j\right\}$ of $\mathfrak{s l}(\ell+1, \mathrm{~F})$. [Hint: Recall that the root spaces $L_{\alpha} \perp L_{\beta}$ whenever $\alpha+\beta \neq 0$, and $\kappa(x, y)=2(\ell+1) \operatorname{Tr}(x y)$ for $x, y \in \mathfrak{s l}(\ell+1, \mathrm{~F})$.]
5. Let H be a maximal toral subalgebra of a semisimple Lie algebra L. For $\alpha \in H^{*}$, denote $t_{\alpha} \in H$ such that $\kappa\left(t_{\alpha}, h\right)=\alpha(h)$ for all $h \in H$. Prove that $t_{a \alpha+b \beta}=a t_{\alpha}+b t_{\beta}$ for any $\alpha, \beta \in H^{*}$ and $a, b \in \mathrm{~F}$.
