2.1 Killing form

- 1. Prove that the Killing form of a nilpotent Lie algebra L is identically zero.
- 2. Prove that a Lie algebra L is solvable iff the radical of its Killing form contains [L, L].
- 3. Let L be the three dimensional solvable Lie algebra with basis $\{x, y, z\}$:

$$[x, y] = z,$$
 $[x, z] = y,$ $[y, z] = 0.$

Compute the radical of its Killing form.

- 4. Relative to the standard basis of $\mathfrak{sl}(3, F)$, compute the determinant of κ . Which primes divide it?
- 5. Let $L = L_1 \oplus \cdots \oplus L_t$ be the decomposition of a semisimple Lie algebra L into its simple ideals. Show that the semisimple and nilpotent parts of $x \in L$ are the sums of the semisimple and nilpotent parts in the various L_i of the components of x.

- 2.2 Complete reducibility of representations
 - 1. Let V be an L-module. Prove that V is a direct sum of irreducible submodules if and only if each L-submodule W of V possesses a complement L-submodule W' such that $V = W \oplus W'$.
 - 2. Prove the every irreducible representation of a solvable Lie algebra L over \mathbf{C} is one dimensional.
 - 3. Let V be an L-module. Show that the dual space V^* is an L-module in the way that for $x \in L, f \in V^*, v \in V$,

$$(x.f)(v) := -f(x.v).$$

4. Let V and W be L-modules. Show that the tensor product space $V \otimes W$ is an L-module in the way that for any $x \in L$, $v \in V$ and $w \in W$,

$$x.(v \otimes w) := x.v \otimes w + v \otimes x.w.$$

- 5. Let V and W be L-modules.
 - (a) Show that the map $\Psi: V^* \otimes W \to \text{Hom}(V, W)$ defined on the typical generators

$$\Psi(\delta\otimes w)(v):=\delta(v)w,\qquad \delta\in V^*,\ w\in W,\ v\in V,$$

is an isomorphism of vector spaces.

(b) Show that Hom(V, W) with the following L-action is an L-module:

$$(x.f)(v) = x.f(v) - f(x.v), \qquad x \in L, \ f \in \text{Hom}(V,W), \ v \in V.$$

- 6. Consider the derivations of a reductive Lie algebra $L = Z(L) \oplus [L, L]$. Let $\delta \in \text{Der } L$ be arbitrary.
 - (a) Show that $\delta([L, L]) \subset [L, L]$, and there is $x \in [L, L]$ such that $\delta|_{[L, L]} = \operatorname{ad} x|_{[L, L]}$.
 - (b) Show that $\delta(Z(L)) \subset Z(L)$, and every $\phi \in \text{End}(L)$ with $\text{Im} \phi \subset Z(L)$ and $\text{Ker} \phi \supset [L, L]$ is in Der L.
 - (c) Show by (a) and (b) that $\text{Der } L = \text{End} (Z(L)) \oplus \text{ad } L$.

- 2.3 Representation of $\mathfrak{sl}(2, F)$: let $L := \mathfrak{sl}(2, F)$, with F algebraically closed and char(F) = 0.
 - 1. For any $m \in \mathbf{N}$, prove that the (m+1) dimensional *L*-module V(m) is irreducible. (*Hint: first show that every L-submodule of* V(m) *must be spanned by some weight spaces.*)
 - 2. Suppose a finite dimensional *L*-module *V* is decomposed into a direct sum of irreducible submodules: $V \simeq \sum_{m \in \mathbf{N}} a_m V(m)$, where each $a_m \in \mathbf{N}$. Show that:
 - (a) the total number of irreducible summands is

$$\sum_{m \in \mathbf{N}} a_m = \dim V_0 + \dim V_1;$$

(b) for $m \in \mathbf{N}$, the number of copies of V(m) in V is

$$a_m = \dim V_m - \dim V_{m+2}.$$

- 3. $M = \mathfrak{sl}(3, F)$ contains a copy of L in its upper left-hand 2×2 position. Write M explicitly as direct sum of irreducible L-submodules (M viewed as L-module via the adjoint representation): $V(0) \oplus V(1) \oplus V(1) \oplus V(2)$.
- 4. Decompose the tensor product of the two *L*-modules V(3), V(7) into the sum of irreducible submodules: $V(4) \oplus V(6) \oplus V(8) \oplus V(10)$. Try to develop a general formula for the decomposition of $V(m) \otimes V(n)$.
- 5. The irreducible representation of L of highest weight m can also be realized "naturally", as follows. Let X, Y be a basis for the two dimensional vector space F^2 , on which L acts as usual. Let F[X, Y] be the polynomial algebra in two variables, and extend the action of L to F[X, Y] by the derivation rule:z.fg = (z.f)g + f(z.g), for $z \in L$, $f, g \in F[X, Y]$. Show that this extension is well defined and that F[X, Y] becomes an L-module. Then show that the subspace of homogeneous polynomials of degree m, with basis $X^m, X^{m-1}Y, \cdots, XY^{m-1}, Y^m$, is invariant under L and irreducible of highest weight m.

- 2.4 Root space decomposition
 - 1. Suppose V is a finite dimensional vector space over C. Let $S \subseteq \text{End}(V)$ be a commuting family of semisimple endomorphisms. Prove that the endomorphisms in S are simultaneously diagonalizable. [Hint: Let $\{h_1, h_2, \dots, h_m\}$ be a maximal linearly independent subset of S. Then V is a direct sum of eigenspaces V_{λ} of h_m associate to eigenvalues λ . Show that every $h \in S$ acts invariantly on each V_{λ} . Then proceed the induction on m.]
 - 2. For each classical linear Lie algebra of types A_{ℓ} , B_{ℓ} , C_{ℓ} , D_{ℓ} , determine the roots and root spaces.
 - 3. Show that all Cartan integers of $\mathfrak{sl}(\ell+1, F)$ are $0, \pm 1$.
 - 4. Compute the basis of $\mathfrak{sl}(\ell+1, \mathbf{F})$ which is dual (via the Killing form κ) to the standard basis $\{h_i \mid i \in [\ell]\} \cup \{e_{ij} \mid i, j \in [\ell+1], i \neq j\}$ of $\mathfrak{sl}(\ell+1, \mathbf{F})$. [Hint: Recall that the root spaces $L_{\alpha} \perp L_{\beta}$ whenever $\alpha + \beta \neq 0$, and $\kappa(x, y) = 2(\ell+1) \operatorname{Tr}(xy)$ for $x, y \in \mathfrak{sl}(\ell+1, \mathbf{F})$.]
 - 5. Let H be a maximal toral subalgebra of a semisimple Lie algebra L. For $\alpha \in H^*$, denote $t_{\alpha} \in H$ such that $\kappa(t_{\alpha}, h) = \alpha(h)$ for all $h \in H$. Prove that $t_{a\alpha+b\beta} = at_{\alpha} + bt_{\beta}$ for any $\alpha, \beta \in H^*$ and $a, b \in F$.