3.1 Introduction of Root Systems

1. Prove that \mathcal{W} is a normal subgroup of $\operatorname{Aut}(\Phi)$.
2. Prove that the respective Weyl groups of $A_{1} \times A_{1}, A_{2}, B_{2}, G_{2}$ are dihedral of order 4, $6,8,12$.
3. Show by example that $\alpha-\beta$ may be a root even when $(\alpha, \beta)<0$.
4. Let $\alpha, \beta \in \Phi$ span a two dimensional subspace E^{\prime} of E. Prove that $E^{\prime} \cap \Phi$ is a root system in E^{\prime}, so that it must be one of the four root systems in \mathbf{R}^{2} (see Figure 1 of Section 9.4 in the textbook).
5. Let c be a positive real number. If Φ possesses any roots of squared length c, prove that the set of all such roots is a root system in the subspace of E it spans.

3.2 Simple Roots and Weyl Group

1. For each of the rank 2 root systems, sketch all the roots, label a base Φ, and sketch the corresponding fundamental Weyl chamber.
2. When Φ is irreducible, prove that each closed Weyl chamber contains exactly one root of each root length.
3. Let $\lambda \in \mathcal{C}(\Delta)$, if $\sigma \lambda=\lambda$ for some $\sigma \in \mathcal{W}$, then $\sigma=1$.
4. Prove that there is a unique element σ in \mathcal{W} sending Φ^{+}to Φ^{-}(relative to Δ). Prove that any reduced expression for σ must involve all $\sigma_{\alpha}(\alpha \in \Delta)$. Discuss $\ell(\sigma)$.
