- 3.1 Introduction of Root Systems
 - 1. Prove that \mathcal{W} is a normal subgroup of Aut (Φ) .
 - 2. Prove that the respective Weyl groups of $A_1 \times A_1$, A_2 , B_2 , G_2 are dihedral of order 4, 6, 8, 12.
 - 3. Show by example that $\alpha \beta$ may be a root even when $(\alpha, \beta) < 0$.
 - 4. Let $\alpha, \beta \in \Phi$ span a two dimensional subspace E' of E. Prove that $E' \cap \Phi$ is a root system in E', so that it must be one of the four root systems in \mathbb{R}^2 (see Figure 1 of Section 9.4 in the textbook).
 - 5. Let c be a positive real number. If Φ possesses any roots of squared length c, prove that the set of all such roots is a root system in the subspace of E it spans.

- 3.2 Simple Roots and Weyl Group
 - 1. For each of the rank 2 root systems, sketch all the roots, label a base Φ , and sketch the corresponding fundamental Weyl chamber.
 - 2. When Φ is irreducible, prove that each closed Weyl chamber contains exactly one root of each root length.
 - 3. Let $\lambda \in \mathcal{C}(\Delta)$, if $\sigma \lambda = \lambda$ for some $\sigma \in \mathcal{W}$, then $\sigma = 1$.
 - 4. Prove that there is a unique element σ in \mathcal{W} sending Φ^+ to Φ^- (relative to Δ). Prove that any reduced expression for σ must involve all σ_{α} ($\alpha \in \Delta$). Discuss $\ell(\sigma)$.