
Journal of Computational Physics 385 (2019) 75–105
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

An integral equation method for numerical computation of 

scattering resonances in a narrow metallic slit

Junshan Lin a,∗,1, Hai Zhang b,2

a Department of Mathematics and Statistics, Auburn University, Auburn, AL 36849, United States of America
b Department of Mathematics, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 18 September 2018
Received in revised form 21 January 2019
Accepted 22 January 2019
Available online 23 February 2019

Keywords:
Integral equation
Helmholtz equation
Scattering resonances
Subwavelength structure

In this paper we present an efficient and accurate integral equation method to compute 
the scattering resonances for a subwavelength metallic slit structure. A new boundary 
integral equation is derived for the scattering problem, and the computation of scattering 
resonances is reduced to solving the eigenvalues of the corresponding homogeneous 
formulation over the complex plane. The integral operators are evaluated with high-order 
precisions by accurate calculations of the Green’s functions for the layered medium and 
accelerated computation of the slit Green’s function. The Newton’s method is employed 
for solving the eigenvalues of the boundary integral formulation. We propose an effective 
strategy for obtaining the initial guesses of scattering resonances by introducing an 
approximate model for the scattering problem, for which the leading orders of the 
resonances are derived by asymptotic analysis. Numerical experiments are provided to 
demonstrate the accuracy, efficiency, and robustness of the method.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Electromagnetic scattering by subwavelength metallic structures such as apertures and holes has drawn increasing in-
terest since the seminal paper by T. Ebbessen on the so-called extraordinary optical transmission (EOT) and local field 
enhancement (LFE) phenomena [11]. The original EOT experiment has triggered tremendous development of subwavelength 
metallic structures due to their important applications in biological and chemical sensing, near-field spectroscopy, and de-
sign of novel optical devices [1,9,12,31].

For a single subwavelength slit and a periodic array of slits perforated in a perfectly electric conducting (PEC) slab, re-
cently we have presented quantitative analysis of the EOT and LFE phenomena in a series of papers [15–19]. This provides a 
complete picture for the enhancement mechanisms in perfect conducting slit structures. A closely related problem of scatter-
ing by subwavelength cavities is also investigated in [7,6]. The main field enhancement mechanism for such subwavelength 
structures is attributed to the scattering resonances, which are the poles of the resolvent associated with the scattering 
operator when continued meromorphically to the whole complex plane. If the frequency of the incident wave is close the 
real part of the resonance (resonance frequency), an enhancement of scattering field is expected if the imaginary part of the 
resonance is small. The readers are also referred to [3–5] for recent mathematical studies of several other subwavelength 
resonators and their resonant scattering phenomena.
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Fig. 1. Geometry of the slit model. The domain above the metallic slab, the domain of the metallic slab and the domain below the metallic slab are denoted 
by �1, �2 and �3 respectively. The slit Sδ perforated in the slab �2 has a rectangular shape of length d and width δ. The remaining part of the metal 
consists of two disjoint semi-infinite domains �−

δ and �+
δ . The scaling of the geometry is given by δ � d ∼ λ.

In this paper, we investigate numerically the scattering resonances for the more challenging case of real metallic struc-
tures, where the metallic slab is not perfectly conducting anymore. The theoretical analysis will be presented in the 
follow-up series [20,21]. Compared to the PEC case studied previously, optical light can penetrate into real metals with 
the order of skin depth. In addition, surface plasmon resonances would occur for real metals. In terms of mathematical 
complications, the former leads to the scattering problem in a layered medium, and the latter gives rise to certain essential 
scattering poles in the solution formulations. Furthermore, the significant difference in the length scales of the metallic 
structure proposes additional computational challenges. The hole apertures are usually much smaller than the thickness of 
the slab, which is comparable to the incident wavelength. In this paper, we investigate the two-dimensional slit structure 
described in what follows.

The slit is perforated in a metallic slab and the geometry of its cross section is depicted in Fig. 1. The metallic slab 
occupies the domain �2 := {(x1, x2) | 0 < x2 < d} on the x1x2 plane, and the slit, which is invariant along the x3 direction, 
has a rectangular cross section Sδ := {(x1, x2) | 0 < x1 < δ, 0 < x2 < d}. Let ∂ Sδ be the boundary of the slit and ν be the unit 
outward normal pointing to the exterior domain. We denote the domain for the remaining part of the metal by �δ , which 
consists of two disjoint semi-infinite domains �−

δ and �+
δ . We are interested in the subwavelength structure where the slit 

aperture is narrow compared to the thickness of the slab d and the wavelength of the incident field λ. Let us denote by �1, 
�3 the semi-infinite domains above and below the slab respectively. Then the relative permittivity ε on the x1x2 plane is 
given by

ε(x) =

⎧⎪⎨
⎪⎩

ε0 x ∈ �1 ∪ �3,

ε1 x ∈ Sδ,

εm x ∈ �δ,

where ε0, ε1, and εm denote the relative permittivity in the vacuum, in the narrow slit, and in the metal respectively. For 
simplicity of exposition, we shall assume that ε0 = ε1 = 1. However, the numerical approach presented in this paper can be 
easily modified for the case when the slit is filled with some dielectric material such that ε1 �= 1 [9]. The permittivity of the 
metal εm = ε′

m + i ε′′
m is a complex number with negative real part ε′

m , and it holds that |ε′
m| 	 |ε′′

m| [27].
We consider the scattering when a polarized time-harmonic electromagnetic wave impinges upon the subwavelength 

structure. The transverse magnetic (TM) case is considered here by assuming that the incident magnetic field Hi = (0, 0, ui), 
where ui = eik(d1x1−d2(x2−d)) is a plane wave, k is the wavenumber and d = (d1, −d2) is the direction of incidence with 
d2 > 0. The total field u after the scattering satisfies the following equations:⎧⎪⎪⎨

⎪⎪⎩
∇ ·

(
1

ε(x)
∇u

)
+ k2u = 0 in R

2\∂�δ,

[u] = 0,

[
1

ε

∂u

∂ν

]
= 0 on ∂�δ,

(1.1)

where ∂�δ is the boundary of �δ , and [·] denotes the jump of the quantity when the limit is taken along the positive and 
negative unit normal direction ν .

Remark. By the scaling invariance of the scattering model, without loss of generality, we shall assume the metal thickness 
d = 1 throughout the paper.

Due to the smallness of the slit apertures and the presence of the slit corners, the discretization methods based on 
finite element or finite difference are typically too expensive when applied to solve for the resonances of the scattering 
problem (1.1). Furthermore, when the infinite exterior domain is truncated into a finite one using an absorbing boundary 
condition or perfectly matched layer (PML) technique, additional numerical errors will be induced, especially from the 
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reflections near the layer interfaces. Recently, efficient vertical mode matching methods have been developed to compute 
the optical scattering by subwavelength metallic structures [14,22,23]. However, they can not be directly applied to compute 
the resonances, since the condition number for the discretized linear system is usually very large. In this paper, we propose 
an efficient and accurate boundary integral-equation method to compute the resonances of the scattering problem (1.1). 
The integral equation formulation leads to an eigenvalue problem over the complex plane, which is solved by the Newton’s 
method [25,30]. The proposed numerical approach consists of two main ingredients:

(i) A new boundary integral formulation is derived, which only consists of Neumann data along the slit boundary as 
unknowns. In addition, fast and high-order evaluations of the integral operators are achieved via accurate calculation of 
the Green’s functions for the layered medium over the tiny slit apertures and accelerated computation of the Green’s 
function for the slit.

(ii) In order to compute the resonances by the Newton’s method in an efficient and robust manner, an effective strategy for 
obtaining the initial guesses of the resonances is developed. This is achieved by introducing an approximate model for 
the scattering problem (1.1) and deriving the leading orders of the corresponding resonances.

The rest of the paper is organized as follows. We derive the boundary integral equation in Section 2. Its efficient and ac-
curate discretization is elaborated in Section 3. The strategy for obtaining initial guesses of the resonances for the Newton’s 
method is presented Section 4, and we demonstrate the performance of the computational approach through various nu-
merical examples in Section 5. Finally, we discuss briefly on the extension of the computational framework to the perfectly 
conducting slit in Section 6.

2. Integral equation formulation

2.1. Green’s functions

Let G�(x, y) be the Green’s function for the layered medium such that

	xG�(x, y) + k2ε(x)G�(x, y) = δ̃(x − y), x ∈
3⋃

j=1

� j, y ∈ ��, (2.1)

[G�(x, y)] =
[

1

ε

∂G�(x, y)

∂x2

]
= 0 x2 = 0, x2 = 1.

Here δ̃ denotes the Dirac delta function. It can be shown that (see Appendix A)

G1(x, y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− i

4

(
H (1)

0 (k|x − y|) + εm − 1

εm + 1
H (1)

0 (k|x′ − y|)
)

+ g11(x, y), x ∈ �1,

− iεm

2(εm + 1)
H (1)

0 (k|x − y|) + g12(x, y), x ∈ �2,

g13(x, y), x ∈ �3,

(2.2)

and

G2(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

− i

2(εm + 1)
H (1)

0 (km|x − y|) + g21(x, y), x ∈ �1,

− i

4

(
H (1)

0 (km|x − y|) + 1 − εm

1 + εm
H (1)

0 (km|x′ − y|) + 1 − εm

1 + εm
H (1)

0 (km|x′′ − y|)
)

+ g22(x, y), x ∈ �2,

− i

2(εm + 1)
H (1)

0 (km|x − y|) + g23(x, y), x ∈ �3,

(2.3)

where H (1)
0 is the first kind Hankel function of order 0, x′ and x′′ are the reflection of x by x2 = 1 and x2 = 0, respec-

tively. That is, x′ = (x1, 2 − x2) and x′′ = (x1, −x2). glj(x, y) are continuously differentiable in R2 and are defined via the 
Sommerfeld integrals as given in (A.3)–(A.8). On the other hand, the symmetry of the problem geometry implies that

G3(x1, x2; y1, y2) = G1(x1,1 − x2; y1,1 − y2). (2.4)

Let Gs(x, y) be the Green’s function for the slit domain with the zero Neumann boundary condition such that⎧⎨
⎩

	Gs(x, y) + k2Gs(x, y) = δ(x − y), x, y ∈ Sδ.

∂Gs(x, y) = 0 on ∂ Sδ.

∂νx
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Fig. 2. The boundary of the slit ∂ Sδ consists of 
1 and 
2 (slit apertures), and 
3 and 
4 (slit walls).

Then Gs(x, y) admits the following eigenfunction expansion if k2 is not an eigenvalue of the Neumann problem:

Gs(x, y) =
∞∑

n,p=0

cnpφnp(x)φnp(y), (2.5)

where cnp = 1

k2 − (nπ/δ)2 − (pπ)2 , φnp(x) =
√

anp

δ
cos

(nπx1

δ

)
cos(pπx2), and

anp =
⎧⎨
⎩

1 n = p = 0,

2 n ≥ 1, p = 0 or, n = 0, p ≥ 1,

4 n ≥ 1, p ≥ 1.

2.2. Integral equation over the slit boundary

We denote by 
1 and 
2 the upper and lower slit aperture respectively, and 
3 and 
4 the left and right slit wall 
respectively (cf. Fig. 2). Let S̃ i j be the single-layer operator given by

S̃ i j[ϕ](y) =
∫

 j

Gs(x, y)ϕ(x)dsx y ∈ 
i, (2.6)

where Gs(x, y) is the Green’s function for the slit geometry given in (2.5). Let the single- and double-layer integral operators 
S�

i j and K �
i j be given by

S�
i j[ϕ](y) =

∫

 j

��(x, y)ϕ(x)dsx y ∈ 
i, (2.7)

K �
i j[ϕ](y) = γ j

∫

 j

��(x, y)ϕ(x)dsx y ∈ 
i . (2.8)

Here and in what follows, the constant γ j is defined by

γ j =
⎧⎨
⎩

1 j = 1,2,

1

εm
j = 3,4.

Note that for given y ∈ �� , G�(x, y) is a continuous function for x ∈ R
2 if x �= y. We define the kernel ��(x, y) as the 

extension of the Green’s function G�(x, y) to the slit boundary by letting

��(x, y) = lim
h→0

y+hν∈��

G�(x, y + hν), x, y ∈
4⋃

j=1


 j, x �= y.

The kernel ��(x, y) is defined by

��(x, y) = lim
h→0

y+hν∈��

∂G�(x, y + hν)

∂νx
, x, y ∈

4⋃
j=1


 j, x �= y.

Remark. Here and henceforth, for x ∈ 
1 ∪
2, ∂G�(x,·)
∂νx

is the quantity when the limit is taken along the negative unit normal 
direction ν on 
1 ∪
2. From the expressions of the Green’s function (2.2) and (2.4) and the interface conditions along x2 = 0
and x2 = 1, the kernels ��(x, y) and ��(x, y) are well-defined for � = 1, 2, 3.
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Let uref be the reference wave field when ui impinges on the slab structure without the slit (δ = 0). Then it can be 
calculated that

uref (x) =

⎧⎪⎨
⎪⎩

ui(x) + R ei(ξx1+ρ0(ξ)(x2−1)) x ∈ �1

T1 ei(ξx1+ρm(ξ)x2) + T2 ei(ξx1−ρm(ξ)(x2−1)) x ∈ �2,

T3 ei(ξx1−ρ0(ξ)x2) x ∈ �3,

(2.9)

where

ξ = kd1, ρ0(ξ) =
√

k2 − ξ2, ρm(ξ) =
√

k2εm − ξ2,

q(ξ) = (ρ0(ξ)εm − ρm(ξ))2 ei2ρm − (ρ0(ξ)εm + ρm(ξ))2 .

The reflection and transmission coefficients are given by

R = 1

q
·
[(

ρ0ε
2
m − ρ2

m

)
ei2ρm +

(
ρ2

m − ρ2
0ε2

m

)]
, (2.10)

T1 = −2

q
· εmρ0 (ρm − ρ0εm) eiρm , (2.11)

T2 = −2

q
· εmρ0 (ρm + ρ0εm) eiρm , (2.12)

T3 = −4

q
· εmρ0ρmeiρm . (2.13)

Let us := u − uref be the scattered field induced by the slit. For convenience of notation, we denote the scattered field and 
its normal derivative along the slit boundary 
 j as

ϕ j = us
∣∣

 j

and ψ j = γ j
∂us

∂ν

∣∣∣∣

 j

( j = 1,2,3,4). (2.14)

We also introduce the vector functions ϕ and ψ by letting

ϕ = [ϕ1,ϕ2,ϕ3,ϕ4]T and ψ = [ψ1,ψ2,ψ3,ψ4]T . (2.15)

For y ∈ ��\Sδ , an application of the Green’s second theorem yields (see Appendix B)

β�us(y) =
4∑

j=1

∫

 j

G�(x, y)

(
γ j

∂us(x)

∂νx

)
−

(
γ j

∂G�(x, y)

∂νx

)
us(x)dsx. (2.16)

In the above, the coefficient β� is given by

β� =
⎧⎨
⎩

1 � = 1,3,

1

εm
� = 2.

By taking the limit of (2.16) with � = 1 to the slit boundary 
1 and using the jump condition for the double layer potential, 
it is seen that for y ∈ 
1,

εm

εm + 1
ϕ1 + K 1

11[ϕ1] + K 1
12[ϕ2] + K 1

13[ϕ3] + K 1
14[ϕ4] = S1

11[ψ1] + S1
12[ψ2] + S1

13[ψ3] + S1
14[ψ4]. (2.17)

Similarly, for y ∈ 
2, it follows that

εm

εm + 1
ϕ2 + K 3

21[ϕ1] + K 3
22[ϕ2] + K 3

23[ϕ3] + K 3
24[ϕ4] = S3

21[ψ2] + S3
22[ψ2] + S3

23[ψ3] + S3
24[ψ4]. (2.18)

Taking the limit of (2.16) with � = 2 to the slit boundary 
3 and 
4 respectively, we obtain the following two integral 
equations

1

2εm
ϕ3 + K 2

31[ϕ1] + K 2
32[ϕ2] + K 2

33[ϕ3] + K 2
34[ϕ4] = S2

31[ψ3] + S2
32[ψ2] + S2

33[ψ3] + S2
34[ψ4], (2.19)

1
ϕ4 + K 2

41[ϕ1] + K 2
42[ϕ2] + K 2

43[ϕ3] + K 2
44[ϕ4] = S2

41[ψ4] + S2
42[ψ2] + S2

43[ψ3] + S2
44[ψ4]. (2.20)
2εm
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Define the multiplication operator

D =

⎡
⎢⎢⎢⎣

εm
εm+1 I1 0 0 0

0 εm
εm+1 I2 0 0

0 0 1
2εm

I3 0
0 0 0 1

2εm
I4

⎤
⎥⎥⎥⎦ ,

where I j : L2(
 j) → L2(
 j) are identity operators. Let

K
e =

⎡
⎢⎢⎢⎣

K 1
11 K 1

12 K 1
13 K 1

14

K 3
21 K 3

22 K 3
23 K 3

24

K 2
31 K 2

32 K 2
33 K 2

34

K 2
41 K 2

42 K 2
43 K 2

44

⎤
⎥⎥⎥⎦ and S

e =

⎡
⎢⎢⎢⎣

S1
11 S1

12 S1
13 S1

14

S3
21 S3

22 S3
23 S3

24

S2
31 S2

32 S2
33 S2

34

S2
41 S2

42 S2
43 S2

44

⎤
⎥⎥⎥⎦ ,

Then we can write the system of the integral equations (2.17)–(2.20) as the following concise form

(D+K
e)[ϕ] = S

e[ψ], (2.21)

where the vector functions ϕ and ψ are Dirichlet and Neumann data on the slit boundary defined in (2.15).
Inside the slit Sδ , using the Green’s function (2.5) with the zero Neumann boundary condition, it follows that the total 

field u can be expressed as

u(y) =
∫

∂ Sδ

Gs(x, y)
∂u(x)

∂ν
dsx for y ∈ Sδ.

The continuity of the single layer potential yields

u(y) =
4∑

j=1

∫

 j

Gs(x, y)
∂u(x)

∂ν
dsx, y ∈ 
i, i = 1,2,3,4. (2.22)

Using the relation u = us + uref , we express the above integral equation in the operator form as

ϕ = −S
i[ψ] + f, (2.23)

where the operator

S
i =

⎡
⎢⎢⎣

S̃11 S̃12 S̃13 S̃14

S̃21 S̃22 S̃23 S̃24

S̃31 S̃32 S̃33 S̃34

S̃41 S̃42 S̃43 S̃44

⎤
⎥⎥⎦ and f = uref

∣∣∣
∂ Sδ

+ S
i
[

∂νuref
∣∣∣
∂ Sδ

]
.

By combining (2.21) and (2.23), one may eliminate ϕ and obtain the following integral equation for the scattering 
problem (1.1):(

S
(e)(k) + (D(k) +K

(e)(k))S(i)(k)
)

ψ = (D(k) +K
(e)(k))f. (2.24)

Here we express explicitly the dependence of the operators on k. Once the Neumann data ψ is computed, the Dirichlet data 
ϕ can be evaluated via the integral equation (2.23).

A scattering resonance of (1.1) is defined as a complex number k such that there exist nontrivial solutions (so-called 
quasi modes) when the incident field is zero. This corresponds to the characteristic values of the operator-valued function 
S

(e) + (D +K
(e)) S(i) with respect to the variable k. Namely, we solve for k over the complex plane such that the following 

homogeneous equation attains nontrivial solution:

T(k)ψ = 0, where T(k) := S
(e)(k) + (D(k) +K

(e)(k))S(i)(k). (2.25)

We employ the Newton’s method to solve the above eigenvalue problem. The method starts from some initial guess for 
the eigenvalue and the eigenvector, and updates the solution iteratively as follows:

T(k( j)) ψ̃
( j+1) = T

′(k( j))ψ ( j),

k( j+1) = k( j) − 〈ψ ( j), v〉/〈ψ̃ ( j+1)
, v〉, v is a normalization vector,

ψ ( j+1) = Cψ̃
( j+1)

, C is a normalization constant.
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To reduce the computational complexity arising from the evaluation of hyper-singular integral operators, we approximate 
the derivative T′ using a finite difference approximation. We refer the readers to [25,30] for detailed discussions of the 
procedures. The eigenvalue solver requires the discretization of the integral operators in (2.25) in an accurate manner and 
an effective strategy for choosing initial-guess values, which are discussed in Section 3 and 4 respectively.

3. Numerical computation of the integral operators

3.1. Numerical evaluation of the Green’s function for layered medium

The evaluation of the kernels ��(x, y) and ��(x, y), or equivalently G� and their derivatives, involves the computation 
of functions glj(x, y), which are defined via the Sommerfeld integrals (A.3)–(A.8). We adopt a contour integration approach 
together with the smooth-windowing technique as introduced in [28,29]. An improved discretization strategy is proposed 
in what follows by treating the slow-varying integral and the oscillatory integral separately. The new strategy leads to a 
higher-order accuracy compared to the original version in [28,29], especially for tiny slit apertures with size δ. In addition, 
the presence of plasmonic resonance poles induced by the metal involves new complexities which need to be addressed 
separately.

For clarity we elaborate on the computation of g11(x, y), and the others are treated similarly. To this end, one needs to 
compute the Sommerfeld integrals

Ī :=
∞∫

0

h(ξ) dξ =
∞∫

0

ρ0(ξ)εm + ρm(ξ)

ρ0(ξ) · (ρo(ξ) + ρm(ξ)) · q(ξ)
eiρ0(x2+y2−2) cos(ξ(x1 − y1))dξ

and

Ĩ :=
∞∫

0

h̃(ξ) dξ =
∞∫

0

p(ξ)ei2ρm

ρ0(ξ) · q(ξ)
eiρ0(x2+y2−2) cos(ξ(x1 − y1))dξ,

where

ρ0(ξ) =
√

k2 − ξ2, ρm(ξ) =
√

k2εm − ξ2,

p(ξ) = (εm + 1)
(
ρ0(ξ)2ε2

m − ρm(ξ)2
)

− (εm − 1) (ρ0(ξ)εm − ρm(ξ))2 ,

q(ξ) = (ρ0(ξ)εm − ρm(ξ))2 ei2ρm(ξ) − (ρ0(ξ)εm + ρm(ξ))2 .

Here and henceforth, the function f (z) = √
z is understood as an analytic function defined in the domain C\{−it : t ≥ 0} by

z
1
2 = |z| 1

2 e
1
2 i arg z.

Let us focus on the first integral. Note that ρo(ξ) + ρm(ξ) �= 0 and the integrand attains poles for ξ satisfying

ρ0(ξ) = 0 and q(ξ) = 0.

When k �= 0, it is observed that ξ = ±k are branch points for ρ0(ξ) and removable singularities for 1/ρ0(ξ). The branch 
point for ρm(ξ) is ξ = k

√
εm , which lies in the first quadrant with large real part by noting that ε′

m < 0 and |ε′
m| 	 |ε′′

m|. The 
roots of q(ξ) correspond to surface plasmonic resonance frequencies of the metallic slab. More precisely, if one considers 
the scattering problem (1.1) without the slit such that δ = 0 and no source is present, then from (2.9)–(2.13), we see that 
non-trivial solutions exist when q(ξ) = 0. The roots, which are called surface plasmonic resonance frequencies, lie in the 
vicinity of

ξsp = k
√

εm/(εm + 1).

They are essential singularities for 1/q(ξ). Note that ε′
m < −1 and |ε′

m| 	 |ε′′
m|, hence it holds that |ξsp | > |k|. The relative 

positions of k and ξsp are shown in Fig. 3.
The whole integral Ī is decomposed into three parts as follows:

Ī = Ī1 + Ī2 + Ī3 =
ξ1∫

0

h(ξ)dξ +
ξ2∫

ξ1

h(ξ)dξ +
∞∫

ξ2

h(ξ)dξ.

In the above, the real positive number ξ1 is chosen to be larger than Re ξsp so that the interval (0, ξ1) contains all possible 
poles of the integrand. We set
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Fig. 3. The location ξsp for given complex-valued k. The curve C is denoted by the dash line in the fourth quadrant.

ξ2 = max {ξ1,2π/|x1 − y1|}
so that the integrand for I2 is a slow varying function in the interval (ξ1, ξ2), and I3 is an oscillatory integral. The compu-
tation of each part can be accomplished by the following process.

For Ī1, two different approaches are applied for Im k ≥ 0 and Im k < 0.

(i) Im k ≥ 0: One chooses a simple curve C in the fourth quadrant that starts at the origin and ends at ξ = ξ1 (see Fig. 3). 
By the Cauchy integral theorem,

Ī1 =
∫
C

h(ξ)dξ =
1∫

−1

h(r(t))dt,

where ξ = r(t) is the parameterization of the curve C . Due to the smoothness of the integrand over the curve C , Ī1 can 
be computed with high-oder accuracy by the Clenshaw-Curtis quadrature [8].

(ii) Im k < 0: Due to the presence of the branch point ξ = k and the plasmonic resonances poles near ξsp , one can not 
find a closed curve consisting of the interval (0, ξ1) such that h(ξ) is analytic inside the domain bounded the curve. 
Instead, observing that h(ξ) is analytic on the subinterval (0, Re k) and (Re k, ξ) respectively, I1 is computed directly by 
evaluating the integral on each subinterval separately. However, when |Im k| is small, the integrand attains large values 
near the end point Re k. In order to achieve high-order accuracy, graded meshes are employed to discretize the interval 
and the Fourier series representation of h is used [10]. Such techniques are also used to discretize the integral operators 
in Section 3.3.

The integrand for Ī2 is non-oscillatory on (ξ1, ξ2). Typically, |x1 − y1| is very small due to the smallness of the slit 
aperture size δ, hence the interval size A = |ξ2 − ξ1| is large. By a change of variable ξ = ξ1 + Aξ̄ , it follows that

Ī2 = A

1∫
0

h(ξ1 + Aξ̄ )dξ̄ .

Note that h(ξ) decays as 1/|ξ |3 when |ξ | → ∞, which implies that the function value h(ξ1 + Aξ̄ ) spans from order O (1) to 
O (|x1 − y1|3) in (0, 1). As such the derivate of h(ξ + Aξ̄ ) is extremely large near the left end point, and the Clenshaw-Curtis 
quadrature will not yield high-order accuracy for computing Ī2. Instead, graded meshes are used again to discretize the 
interval and a Fourier series expansion of h is adopted.

Finally the evaluation of the oscillatory integral Ī3 is based on the smooth-windowing technique using the partition of 
the unity [29]. For a given constant 0 < α < 1, we define a smooth cut-off (window) function
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Table 1
The accuracy of numerical integration obtained by treating the 
slow-varying integral and the oscillatory integral separately, and 
by applying the Clenshaw-Curtis quadrature directly on the whole 
integral. n denotes the number of grid points used for each subin-
terval. The same number of grid points is used to compute Ī(2) .

n | Ī − Ī(1)| | Ī − Ī(2)|
20 3.43 × 10−3 6.53 × 10−2

40 1.39 × 10−5 2.22 × 10−2

80 3.72 × 10−9 1.14 × 10−3

ηB(ξ̄ ) =

⎧⎪⎪⎨
⎪⎪⎩

1 |ξ̄ | ≤ αB,

e
2e−1/z

z−1 , αB < |ξ̄ | < B, z = |ξ̄ |−αB
(1−α)B ,

0 |ξ̄ | > B.

(3.1)

We approximate the integral by multiplying the integrand with the window function:

Ī3 = ξ2

∞∫
0

h(ξ2(1 + ξ̄ ))dξ̄ ≈ ξ2

B∫
0

h(ξ2(1 + ξ̄ )) · ηB(ξ̄ )dξ̄ .

The integrand is smooth and the Clenshaw-Curtis quadrature is applied.
To demonstrate the accuracy of numerical integration, we consider the evaluation of the integral with k = 0.5, 

|x1 − y1| = 0.02 and x2 = y2 = 1. The permittivity is set as εm = −10 + i. The real integral value Ī = −0.088734021404942 −
0.122293333722895i (up to machine precision). To demonstrate the improved accuracy by treating the slow-varying inte-
gral and the oscillatory integral separately, the second column of Table 1 shows the accuracy of numerical integration by 
employing the quadrature rule described above, which we denote as Ī(1) . The third column shows the numerical value Ī(2)

that is obtained by using the same window function but by applying the Clenshaw-Curtis quadrature directly on the whole 
integral.

3.2. Accelerated computation of the slit Green’s function

The slit Green’s function Gs(x, y) adopts the expansion (2.5). However, the expansion series converges slowly with a rate 
of O  

(
1

n2+p2

)
and one also needs to take double sum to evaluate. The convergence rate is even slower when the target point 

y and the source point x are close. To remedy this issue, we adopt the Kummer’s transformation technique to accelerate 
the evaluation of the Green’s function [26]. The idea is to convert the slowly convergent series into two series, where the 
slower series can be summed analytically and the faster series can be computed accurately by taking the sum with only a 
smaller number of terms.

We express the slit Green’s function as

Gs(x, y) =
∞∑

n=0

ωn gn(x2, y2) cos
(nπx1

δ

)
cos

(nπ y1

δ

)
, (3.2)

where

ωn =
{

1 n = 0,

2/δ n ≥ 1,

and gn(x2, y2) is the one-dimensional Green’s function that solves

g′′
n (x2, y2) + (k2 − (nπ/δ)2)gn(x2, y2) = δ̃(x2 − y2), g′

n(0, y2) = g′
n(1, y2) = 0.

By a direct calculation, it follows that

gn(x2, y2) = − i

2an
eian|x2−y2| − i

2anbn

(
eian|x2+y2| + eian|2−x2−y2| + eian|2−x2+y2| + eian|2+x2−y2|) , (3.3)

where

an =
√

k2 − (nπ/δ)2 and bn = 1 − ei2an .

It is clear that for n 	 1,
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an = inπ

δ

(
1 − 1

2

(
kδ

nπ

)2

+ O

(
kδ

nπ

)4
)

and bn = 1 + O
(
e−nπ/δ

)
. (3.4)

Lemma 3.1. Let φn(t) = − i
2an

eiant , then for n 	 1,

φn(t) = φn,0(t) + O

(
δ

nπ

)3

for 0 < t ≤ 4, (3.5)

where

φn,0(t) = − δ

2nπ
e− nπ

δ
t . (3.6)

Proof. From the asymptotic expansion (3.4), we obtain

φn(t) = − δ

2nπ

(
1 + 1

2

(
kδ

nπ

)2

+ O

(
kδ

nπ

)4
)

· e− nπ
δ

t ·
(

1 + 1

2

k2δ

nπ
t + O

(
δ

nπ

)3
)

= − δ

2nπ
e− nπ

δ
t − 1

4

(
kδ

nπ

)2

te− nπ
δ

t + O

(
δ

nπ

)3

.

Note that for fixed n > 1, te− nπ
δ

t attains the maximum when t = δ
nπ , hence the assertion follows. �

We define the singular part of the Green’s function by letting

Gs
0(x, y) =

∞∑
n=1

ωn
[
φn,0(|x2 − y2|) + φn,0(|x2 + y2|) + φn,0(|2 − x2 − y2|)

]
cos

(nπx1

δ

)
cos

(nπ y1

δ

)
, (3.7)

where φn,0 is given by (3.6).

Lemma 3.2. Gs
0(x, y) can be expressed as

Gs
0(x, y) = 1

4π

6∑
j=1

[
ln

(
1 − ez j

) + ln
(

1 − ez̄ j

)]
, (3.8)

where

z1 = −π

δ
(|x2 − y2| + i(x1 − y1)), z2 = −π

δ
(|x2 − y2| + i(x1 + y1)),

z3 = −π

δ
(|x2 + y2| + i(x1 − y1)), z4 = −π

δ
(|x2 + y2| + i(x1 + y1)),

z5 = −π

δ
(|2 − x2 − y2| + i(x1 − y1)), z6 = −π

δ
(|2 − x2 − y2| + i(x1 + y1)).

In addition,

Gs(x, y) − Gs
0(x, y) = δ2 ·

∞∑
n=0

ãn(x, y), (3.9)

where

sup
x,y

|ãn(x, y)| ∼ O

(
1

n3

)
for n 	 1.

Remark. To evaluate Gs(x, y), we decompose it as Gs
0(x, y) and Gs(x, y) − Gs

0(x, y). Gs
0 is given explicitly in (3.8), and one 

only needs a small number of terms to evaluate Gs − Gs
0.

Proof. By substituting (3.3) into the expansion (3.2), and using the asymptotic expansion (3.5) with t = |x2 − y2|, |x2 + y2|, 
and |2 − x2 − y2| respectively, we obtain

Gs(x, y) − Gs
0(x, y) =

∞∑
ân(x, y),
n=0
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where

ân(x, y) = δ · O

(
δ

nπ

)3

− iωn

2an · bn

(
eian|2−x2+y2| + eian|2+x2−y2|) cos

(nπx1

δ

)
cos

(nπ y1

δ

)

= δ2 · O

(
1

n3

)
for n 	 1.

Hence the assertion (3.9) holds. To show (3.8), by setting t = |x2 − y2| we see that

∞∑
n=1

ωn φn,0(|x2 − y2|) cos
(nπx1

δ

)
cos

(nπ y1

δ

)

= −
∞∑

n=1

2

δ
· δ

2nπ
e− nπ

δ
|x2−y2| · 1

4

(
e

inπ
δ

(x1−y1) + e− inπ
δ

(x1−y1) + e
inπ
δ

(x1+y1) + e− inπ
δ

(x1+y1)
)

= −
∞∑

n=1

1

4nπ
(enz1 + enz̄1 + enz2 + enz̄2)

= 1

4π

[
ln

(
1 − ez1

) + ln
(

1 − ez̄1
)

+ ln
(
1 − ez2

) + ln
(

1 − ez̄2
)]

.

Similar calculations for t = |x2 + y2| and t = |2 − x2 − y2| lead to the formula (3.8). �
3.3. Discretization of the integral operators

To discretize the single-layer operators S�
i j and S̃ i j and the double-layer integral operators K �

i j in (2.25), we parameterize 
the slit boundary so that x1 = δτ for τ ∈ (0, 1) over the slit apertures 
1 and 
2, and x2 = τ for τ ∈ (0, 1) over the slit 
walls 
3 and 
4. We express the integral operators S�

i j , S̃ i j and K �
i j in the following generic forms without distinguishing 

their expressions on different segments of the slit boundary:

1∫
0

M�(τ ,σ )ψ(τ )dτ , σ ∈ (0,1), (3.10)

1∫
0

M̂(τ ,σ )ψ(τ )dτ , σ ∈ (0,1), (3.11)

1∫
0

N�(τ ,σ )ϕ(τ )dτ , σ ∈ (0,1). (3.12)

In the above, M�(τ , σ), M̂(τ , σ) and N�(τ , σ) denote the kernels ��(x, y), Gs(x, y) and ��(x, y) in the (τ , σ)-coordinate, 
respectively. ψ(τ ) and ϕ(τ ) denote the density functions with the parameterization. Recall that the Green’s function G�(x, y)

are given by (2.2) and (2.3), it is clear that if the source point x and the target point y lies in the same line segment, 
M�(τ , σ) attains the logarithm singularity when τ = σ . From (3.8), the kernel M̂(τ , σ) also attains the logarithm singularity 
when τ = σ . On the other hand, by noting the fact that ∂νx H (1)

0 (k|x − y|) = 0 and ∂νx H (1)
0 (km|x − y|) = 0 if the source point x

and the target point y lie in the same line segment, we deduce that the kernel N�(τ , σ) does not contain singularity when 
τ = σ . In what follows, we discuss their numerical discretization in details.

3.3.1. Numerical evaluation of (3.10) and (3.11)
There exist two types of singularities for the integrand of (3.10) and (3.11). One arises from the logarithm singularity of 

the kernel M�(τ , σ) and M̂(τ , σ) mentioned above, and the other arises from the singularities of the density function ψ(τ )

at the two endpoints of the interval (0, 1). In fact, ψ(τ ) ∈ H−1/2(0, 1) where H−1/2(0, 1) is the standard fractional Sobolev 
space [2]. To evaluate the singular integrals accurately, we employ the Nystrom scheme in combination with graded meshes 
techniques following the procedure described in [10,24]. In the following, for brevity we only describe the calculation of 
(3.10) and the evaluation of (3.11) is similar.

For fixed target point y ∈ 
i , when the source point x ∈ 
 j with j = i, the kernel M�(τ , σ) can be splitted into a singular 
part and a smooth part as follows:

M�(τ ,σ ) = M�,1(τ ,σ ) ln

(
4 sin2

(
σ − τ

))
+ M�,2(τ ,σ ),
2
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Fig. 4. Graded mesh over the slit boundary.

where

M�,1(τ ,σ ) = α�

4π
J0(kα̃�|σ − τ |), M�,2(τ ,σ ) = M�(τ ,σ ) − M�,1(τ ,σ ),

with

α� =
{

2εm
εm+1 , � = 1,3;
1, � = 2.

and α̃� =
⎧⎨
⎩

δ, � = 1,3;
1, � = 2.

It is clear that both M�,1(τ , σ) and M�,2(τ , σ) are smooth functions on (0, 1) × (0, 1).
The graded mesh is realized by introducing a change of variable

τ = w(s) := v(s)r

v(s)r + v(2π − s)r
, 0 < s < 2π,

where r ≥ 2 and

v(s) =
(

1

r
− 1

2

)(
π − s

π

)3

+ 1

r

s − π

π
+ 1

2
.

The function w(s) is smooth and increasing in (0, 2π), and it holds that w(i)(0) = w(i)(2π) = 0 for i = 0, · · · , r − 1. If the 
grid points {s j}2n

j=0 are equally distributed on the interval [0, 2π ], then {w(s j)}2n
j=1 yields a graded mesh where one half 

of the grid points is equally distributed over the whole interval (0, 1), and the other half is accumulated towards the end 
points τ = 0 and τ = 1 (see Fig. 4).

With the change of variable, the integral

1∫
0

M�(τ ,σ )ψ(τ )dτ =
2π∫
0

M�(w(s), w(t))ψ(τ (s))w ′(s) ds.

Correspondingly, we split the kernel M� as

M�(w(s), w(t)) = M̃�,1(s, t) ln

(
4 sin2

(
t − s

2

))
+ M̃�,2(s, t),

where

M̃�,1(s, t) = M�,1(w(s), w(t)) and M̃�,2(s, t) = M�(w(s), w(t)) − M�,1(w(s), w(t)).

We choose an equidistant set of grid points s j = jπ/n for j = 0, 1, · · · , 2n − 1. Using the quadrature rules (cf. [10,24])
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2π∫
0

ln

(
4 sin2

(
t − s

2

))
f (s)ds ≈

2n−1∑
j=0

R j(t) f (s j), (3.13)

where the quadrature weight

R j(t) = −2π

n

n−1∑
m=1

1

m
cos(m(t − t j)) − π

n
cos(n(t − t j)),

and

2π∫
0

f (s)ds ≈ π

n

2n−1∑
j=0

f (s j), (3.14)

it follows that

2π∫
0

M�(w(s), w(t))ψ(τ (s))w ′(s) ds

≈
2n−1∑
j=1

R j(t) M̃�,1(s j, t)ψ(τ (s j)) w ′(s j) + π

n

2n−1∑
j=1

M̃�,2(s j, t)ψ(τ (s j)) w ′(s j). (3.15)

When the source point x ∈ 
 j with j �= i, for sufficiently large p, the integrand M�(w(s), w(t)) ϕ(τ (s)) w ′(s) vanishes at 
the end points. Hence a direct application of the quadrature rule (3.14) yields

1∫
0

M�(τ ,σ )ψ(τ )dτ ≈ π

n

2n−1∑
j=1

M�(w(s j), w(t))ϕ(τ (s j)) w ′(s j). (3.16)

3.3.2. Numerical evaluation of (3.12)
From previous discussions, the kernel N� is not singular when y is away from the slit corners. However, for y near 

the slit corners, N� becomes singular. More precisely, in the xy-coordinate, the singular behavior of the kernel is given by 
�(x, y) ∼ O (1/|x − y|). Hence, a direct application of the trapezoidal rule (3.14) would not lead to a high-oder accuracy 
for those target points. A modified version of the integral formulation is introduced to remedy the issue. To this end, we 
introduce the integral operator

K
0[ϕ](y) =

4∑
j=1

∫

 j

1

2π

∂ ln |x − y|
∂νx

ϕ j(x)dsx y ∈ 
i .

Let 1 be the constant function of 1 along the slit boundary, then

K
0[1](y) = 1

2
. (3.17)

Let us discuss the evaluation of Ke[ϕ] for y ∈ 
1. The treatment for y belonging to other boundaries is the same.
Using the relation (3.17), it follows that

K
eϕ(y) = 1

εm + 1

(
ϕ(1) · η(1)(y) + ϕ(2) · η(2)(y)

)
· (1 − 2K0[1]) +K

eϕ(y), y ∈ 
, (3.18)

where ϕ(1) and ϕ(2) denotes the value of the density function at the corners y(1) and y(2) as shown in Fig. 4. η(1) is a 
smooth cut-off function that attains 1 near the corner y(1) and vanishes toward the other corner y(2) . Similarly, the cut-off 
function η(2) is 1 near the corner y(2) and 0 near the corner y(1) . We compute Keϕ(y) via the equivalent formulation 
(3.18). When the target point y is near the corner y(1) such that η(1) = 1 and η(2) = 0, the formulation (3.18) reduces to

1

εm + 1
ϕ(1) · (1 − 2K0[1]) +K

eϕ(y),

or more precisely,
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Fig. 5. The approximate scattering model where the top and the bottom of the metal (dash lines) are coated with perfectly conducting layers.

1

εm + 1
ϕ(1) +

4∑
j=1

∫

 j

��(x, y)ϕ j(x)dsx − ϕ(1) · 1

π(εm + 1)

∫

 j

∂ ln |x − y|
∂νx

dsx.

In the above integral, the portion that contains a singular kernel is

1

π(εm + 1)

∫

3

∂ ln |x − y|
∂νx

(ϕ(x) − ϕ(1))dsx, (3.19)

and the remaining parts are smooth. However, the whole integrand for (3.19) is not singular, by observing that the smooth-
ness of the function ϕ(x) − ϕ(1) cancels the singularity arising from the kernel ∂ ln |x−y|

∂νx
as x gets closer to the corner y(1) . 

Therefore, we can still apply graded mesh over the slit boundary and the quadrature rule (3.14) to compute (3.18). This 
leads to the following discretization formulas

1∫
0

N�(τ ,σ )ϕ(τ )dτ ≈ π

n

2n−1∑
j=1

N�(w(s j), w(t))ϕ(τ (s j)) w ′(s j), (3.20)

1∫
0

N(0)(τ ,σ )dτ ≈ π

n

2n−1∑
j=1

N(0)
� (w(s j), w(t)) w ′(s j), (3.21)

for each integral in (3.18), where N(0)(τ , σ) denotes the kernel ∂ ln |x−y|
∂νx

in the parameterization space.

4. The strategy for effective initial guess

The initial guess is the key to guarantee the convergence of the Newton’s method for solving the eigenvalue problem 
(2.25) and the robustness of the overall numerical approach. We introduce an approximate model for the original scattering 
problem (1.1), for which the leading orders of the resonances can be derived and computed at very low cost. Those values 
are used as initial guesses for computing the resonances.

4.1. An approximate model for the scattering problem

We consider an approximate model, where the top and the bottom of the metal (dash lines in Fig. 5) are coated with 
perfectly conducting layers. Recall that �δ = �+

δ ∪ �−
δ , correspondingly this leads to zero Neumann boundary condition 

along metal-vacuum interfaces ∂�δ\(
3 ∪ 
4). In addition, note that |ε′
m| 	 |ε′′

m| holds the real and imaginary parts of εm , 
we neglect the metal loss in the approximate model by setting the metal permittivity as ε′

m . As such, the total field ũ after 
the scattering satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∇ ·
(

1

ε̃(x)
∇ũ

)
+ k2u = 0 in R

2\∂�δ,

[ũ] = 0,

[
1

ε̃

∂ ũ

∂ν

]
= 0 on 
3 ∪ 
4,

∂ ũ

∂ν
= 0 on ∂�δ\(
3 ∪ 
4),

(4.1)

where

ε̃(x) =
{

ε0 x ∈R
2\�̄δ,

ε′ x ∈ �δ.
m
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The rationale for proposing the approximate model is as follows. For a given permittivity εm , light can penetrate into the 
metal with a skin depth δm . Let us denote the penetration area in the metal by Sδm , then the slit Sδ together with the 
penetration area Sδm serve as a whole resonator, which attains a countable sequence of resonant frequencies. This resonator 
couples with the exterior medium through the slit aperture and the metal-vacuum interfaces, which would lead to shifts of 
resonant frequencies. In the case when Re εm � −1, one may expect that the coupling through the metal-vacuum interfaces 
is weak and hence the corresponding induced resonance shift is small. A detailed rigorous analysis will be presented in 
[20]. In the above approximate model, we neglect such coupling and it is expected that corresponding resonances will not 
be far from the resonances of the original system (1.1). In the rest of this section, we derive the leading-order terms of the 
resonances for the system (4.1). The argument shares some similarity with the asymptotic analysis of the resonances for a 
perfectly conducting slit [17]. Thus we skip some technical details but highlight the major differences when the metal is 
not a perfect conductor anymore.

4.2. Green’s functions and boundary integral formulation

4.2.1. Green’s functions
Let ge(x, y) be the exterior Green’s function for the PEC slab that satisfies⎧⎪⎨

⎪⎩
	ge(x, y) + k2 ge(x, y) = δ̃(x − y) x, y ∈ ��, � = 1,2

∂ ge(x, y)

∂νx
= 0 on ∂��.

Then

ge(x, y) = − i

4

(
H (1)

0 (k|x − y|) + H (1)
0 (k|x − y′|)

)
,

where H (1)
0 is the first kind Hankel function of order 0, and

y′ =
{

(y1,2 − y2) if x, y ∈ �1,

(y1,−y2) if x, y ∈ �2.

We also introduce the interior Green’s functions gi(x, y) for the metal-vacuum-metal waveguide that satisfies⎧⎪⎪⎨
⎪⎪⎩

∇ ·
(

1

ε̃(x)
∇gi(x, y)

)
+ k2 gi(x, y) = 0 = δ̃(x − y) x ∈ �2, y ∈ Sδ,

∂ gi(x, y)

∂νx
= 0 on {x2 = 1} ∪ {x2 = 0}.

Using eigenfunctions along the x2 direction, gi(x, y) can be expressed as

gi(x, y) =
∞∑

n=0

ω̃n gn(x1, y1) cos(nπx2) cos(nπ y2), (4.2)

where the coefficients

ω̃n =
{

1 n = 0,

2 n ≥ 1,

and the 1D Green’s function gn(x1, y1) solves

Ln gn(x1, y1) :=
(

1

ε̃(x1)
g′

n(x1, y1)

)′
+

(
k2 − (nπ)2

ε̃(x1)

)
gn(x1, y1) = δ̃(x1 − y1), −∞ < x1 < ∞, 0 < y1 < δ.

It is known that the delta function adopts the following eigenfunction expansion (cf. [17]):

δ̃(x1 − y1) = 1

δ
+

∞∑
m=1

2

δ
cos

(mπx1

δ

)
cos

(mπ y1

δ

)
for x1, y1 ∈ (0, δ).

Let χ(0,δ)(x1) be the characteristic function on (0, δ), then we can split gn(x1, y1) as

gn(x1, y1) = g(0)
n (x1) + g(1)

n (x1, y1), (4.3)

where
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Ln g(0)
n (x1, y1) = 1

δ
· χ(0,δ)(x1), (4.4)

Ln g(1)
n (x1, y1) = 2

δ
·

∞∑
m=1

cos
(mπx1

δ

)
cos

(mπ y1

δ

)
· χ(0,δ)(x1). (4.5)

It follows by a direct calculation that

g(0)
n (x1) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

δ
· cn1eγnx1 , −∞ < x1 < 0,

1

δ
· cn1eγn(x1−δ), x1 > δ,

1

δ
·
[

cn2
(
eiαnx1 + eiαn(δ−x1)

) + 1

k2 − (nπ)2

]
, 0 < x1 < δ,

where γn = √
(nπ)2 − k2ε′

m , αn = √
k2 − (nπ)2, and the coefficients

cn2 = γn

α2
n

· 1

iαnε
′
m(1 − eiαnδ) − γn(1 + eiαnδ)

, cn1 = (1 + eiαnδ)cn2 + 1

k2 − (nπ)2
.

Lemma 4.1. If δ � 1 and |ε′
m| ∼ O (1/δ), then the following holds for x1 ∈ (0, δ):

∞∑
n=0

ω̃n g(0)
n (x1) = βi,1 + O (1),

∞∑
n=0

(−1)nω̃n g(0)
n (x1) = βi,2 + O (1).

Here βi,1 and βi,2 are constants given by

βi,1(k) = 1

δ
·

∞∑
n=1

ω̃n

((
1 + eiαnδ

)
cn,2 + 1

k2 − (nπ)2

)
, (4.6)

βi,2(k) = 1

δ
·

∞∑
n=1

(−1)nω̃n

((
1 + eiαnδ

)
cn,2 + 1

k2 − (nπ)2

)
. (4.7)

Proof. We split the sum 
∞∑

n=0

ω̃n g(0)
n (x1) as

∞∑
n=0

ω̃n g(0)
n (x1) =

N0∑
n=0

ω̃n g(0)
n (x1) +

∞∑
n=N0

ω̃n g(0)
n (x1),

where N0 = O (δ−1/2). If n ∼ O (δ−μn ) and 0 ≤ μn ≤ 1/2, the Taylor expansion gives

eiαnx1 + eiαn(δ−x1) = 1 + eiαnδ + O (δ1−μn ) for x1 ∈ (0, δ).

On the other hand, it is clear that

cn,2 ∼ O (1/α2
n ) ∼ O (δ2μn) for 0 ≤ n ≤ N0.

Therefore,

N0∑
n=0

ω̃n g(0)
n (x1) = 1

δ
·

N0∑
n=0

ω̃n

((
1 + eiαnδ

)
cn,2 + 1

k2 − (nπ)2
+ O (δ1+μn)

)
. (4.8)

For n > N0, in light of |ε′
m| ∼ O (1/δ), it follows that

cn,2 ∼ O
(

1/(α2
n |ε′

m|)
)

∼ O
(

1/(n2δ)
)

.

We obtain
∞∑

n=N0

ω̃n g(0)
n (x1) = 1

δ
·

∞∑
n=N0

ω̃n

((
1 + eiαnδ

)
cn,2 + 1

k2 − (nπ)2

)
+ O (1). (4.9)

The assertion holds by combining (4.8) and (4.9). �
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We expand g(1)
n (x1, y1) as the sum of eigenfunctions {vnp}∞p=1 for the operator Ln (see Appendix C). For a given small δ, 

let us assume that |ε′
m| ∼ O (1/δ). Then it follows from Lemma C.1 that

vnp(x1) =
√

2

δ

(
cos

(
(p + 1)πx1

δ

)
+ O (δs)

)
for x1 ∈ (0, δ),

where s ≥ 1/2. On the other hand, from Lemma C.1, each eigenfunction vnp(x1) decays with a rate of O  
(

e−√|ε′
m|/δ

)
outside 

the interval (0, δ). Therefore, recall that g(1)
n (x1, y1) satisfies (4.5), we may approximate g(1)

n (x1, y1) by g̃(1)
n (x1, y1), where 

g̃(1)
n (x1, y1) satisfies

Ln g̃(1)
n (x1, y1) =

∞∑
p=0

vnp(x1)vnp(y1).

Using the fact that Ln vnp = (k2 − λnp)vnp , where λnp is the eigenvalue for Ln , it follows that

g̃(1)
n (y1, y1) =

∞∑
p=0

1

k2 − λnp
vnp(x1)vnp(y1), x1, y1 ∈ (0, δ). (4.10)

We skip the very technical proof and summarize the above formal analysis in the following lemma.

Lemma 4.2. If δ � 1 and |ε′
m| ∼ O (1/δ), then for each n, it holds that

g(1)
n (y1, y1) = g̃(1)

n (y1, y1) + O (δς ) for x1, y1 ∈ (0, δ),

where ς ≥ 1 and g̃(1)
n is defined in (4.10).

4.2.2. Boundary integral formulation
Let ũr be the reflected field by the perfectly conducting slab in the absence of slit, and ũs := ũ − ui − ũr be the scattered 

field induced by opening the slit. From the Green’s identity, one obtains an integral equation for ũs :

ũs(y) =
∫

1

ge(x, y)
∂ ũs(x)

∂ν
dsx, y ∈ �1.

Using the fact that 
∂ui

∂ν
+ ∂ur

∂ν
= 0 on {x2 = 1} and the continuity of the single layer potential, it follows that the total field 

satisfies

ũ(y) =
∫

1

ge(x, y)
∂ ũ(x)

∂ν
dsx + ui(y) + ũr(y), y ∈ 
1.

Similarly,

ũ(y) =
∫

2

ge(x, y)
∂ ũ(x)

∂ν
dsx, y ∈ 
2.

Applying the Green’s identity in the slab domain �2 and using the boundary conditions, the solution inside the slit can be 
expressed as

ũ(y) = −
∫


1∪
2

gi(x, y)
∂ ũ(x)

∂ν
dsx for y ∈ Sδ.

This leads to the equation

ũ(y) = −
∫

gi(x, y)
∂ ũ(x)

∂ν
dsx for x ∈ 
1 ∪ 
2.

1∪
2
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Imposing the continuity of the solution along the slit apertures leads to the following system of integral equations:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∫

1

ge(x, y)
∂ ũ

∂ν
dsx +

∫

1∪
2

gi(x, y)
∂ ũ

∂ν
dsx + ui + ũr = 0 on 
1,

∫

2

ge(x, y)
∂ ũ

∂ν
dsx +

∫

1∪
2

gi(x, y)
∂ ũ

∂ν
dsx = 0 on 
2.

(4.11)

To study the resonances of the scattering problem, it is more convenient to rescale the formulation by introducing the 
variables X = x1/δ and Y = y1/δ. We also define the following quantities:

ϕ̃1(X) := − ∂ ũ

∂x2
(δX,1); ϕ̃2(Y ) := ∂ ũ

∂x2
(δX,0);

f̃ (X) := (ui + ur)(δX,1) = 2eikd1δX ;
Ge(X, Y ) := ge(δX,1; δY ,1) = ge(δX,0; δY ,0);
Gi(X, Y ) := gi(δX,1; δY ,1) = gi(δX,0; δY ,0);
G̃ i(X, Y ) := gi(δX,1; δY ,0) = gi(δX,0; δY ,1).

Then the boundary integral equations (4.11) can be written as the following in the scaled coordinates.[
T e + T i T̃ i

T̃ i T e + T i

][
ϕ̃1
ϕ̃2

]
=

[
f̃ /δ
0

]
, (4.12)

where

(T eϕ)(Y ) =
1∫

0

Ge
δ(X, Y )ϕ(X)dX Y ∈ (0,1); (4.13)

(T iϕ)(Y ) =
1∫

0

Gi
δ(X, Y )ϕ(X)dX Y ∈ (0,1); (4.14)

(T̃ iϕ)(Y ) =
1∫

0

G̃ i
δ(X, Y )ϕ(X)dY Y ∈ (0,1). (4.15)

4.3. Asymptotic expansions of the boundary integral operators

We have the following asymptotic expansions for the kernels Gi , Ge and G̃ i .

Lemma 4.3. If kδ � 1, then for X, Y ∈ (0, 1),

Ge(X, Y ) + Gi(X, Y ) = β(k) + κ(X, Y ) + k∞(X, Y ), (4.16)

G̃ i(X, Y ) = β̃(k) + k̃∞(X, Y ). (4.17)

In the above,

β(k) =
(

1

π
(ln k + γ̃0) + 1

π
ln δ

)
+ βi,1(k), β̃ = βi,2(k), (4.18)

where βi,1 and βi,2 are defined in (4.6) and (4.7), γ̃0 = c0 − ln 2 − iπ/2, and c0 is the Euler constant. The kernel |κ(X, Y )| ∼ O (1), 
|k∞(X, Y )| ∼ O (δς ) and |k̃∞(X, Y )| ∼ O (δς ) where ς ≥ 1.

Proof. First, the asymptotic expansion of H (1)
0 (cf. [10]) leads to

Ge(X, Y ) =
(

− i

2

)
H (1)

0 (δk|X − Y |) = 1

π

[
ln δ + ln k + γ̃0 + ln |X − Y | + O

(
δ2 ln δ

)]
. (4.19)

From the expansion (4.2) and the decomposition (4.3), we have
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Gi(X, Y ) =
∞∑

n=0

ω̃n gn(δX, δY ) =
∞∑

n=0

ω̃n g(0)
n (δX) +

∞∑
n=0

ω̃n g(1)
n (δX, δY ).

An application of Lemma 4.1 and 4.2 yields

Gi(X, Y ) = βi,1(k) + O (1) +
∞∑

n=0

ω̃n g̃(1)
n (δX, δY ) + O (δς ) (4.20)

for ς ≥ 1. By the definition (4.10), it follows that

∞∑
n=0

ω̃n g̃(1)
n (δX, δY ) =

∞∑
n=0

∞∑
p=0

ω̃n

k2 − λnp
vnp(δX)vnp(δY )

=
∞∑

p=1

∞∑
n=0

2ω̃n

(k2 − λnp) · δ
(

cos(pπ X) cos(pπY ) + O (δς )
)
, (4.21)

where we have used the following fact in the second equality

vnp(δX) =
√

2

δ

(
cos ((p + 1)π X) + O (δs)

)
for s ≥ 1/2.

For each p, from the asymptotic expansion of the λnp (C.2) and the representation of elementary functions by series (cf. 
[13]), the constant

∞∑
n=0

2ω̃n

(k2 − λnp) · δ ≈ − 2

δ · √((pπ + θ0)/δ)2 − k2
coth

(√
((pπ + θ0)/δ)2 − k2

)

≈ − 1

pπ
− k2δ2

p3π3
+ O

(
δ4

p5

)
.

By substituting into (4.21), we see that

∞∑
n=0

ω̃n g̃(1)
n (δX, δY ) =

∞∑
p=1

2

pπ
cos(pπ X) cos(pπY ) + O (δς ). (4.22)

A combination of (4.19), (4.20), (4.22) leads to the expansion for Ge(X, Y ) + Gi(X, Y ).
For G̃ i(X, Y ), from Lemma 4.1 and 4.2, we see that

G̃ i(X, Y ) = βi,2(k) + O (1) +
∞∑

n=0

(−1)nω̃n g̃(1)
n (δX, δY ) + O (δς ). (4.23)

A similar calculation as above gives the desired expansion, and we omit here for conciseness. �
Based on the above decomposition of the Green’s functions, we have the decomposition of the following integral opera-

tors:

Lemma 4.4. Let K , K∞ , K̃∞ be the integral operators corresponding to the Schwarz kernels κ(X, Y ), κ∞(X, Y ) and κ̃∞(X, Y ), and P
be projection operator defined by Pϕ(X) = (ϕ, 1)1, then the operator T e + T i and T̃ i admit the following decomposition:

T e + T i = β P + K + K∞, T̃ i = β̃ P + K̃∞.

4.4. Scattering resonances of the approximate model and the strategy for initial guess

To obtain the resonances of the approximate model (4.1), we solve for the homogeneous problem when f̃ = 0 in (4.12). 
By virtue of Lemma 4.4, the integral operators adopt the following expansion:[

T e + T i T̃ i

T̃ i T e + T i

]
=

[
β P β̃ P
β̃ P β P

]
+ K I+

[
K∞ K̃∞
K̃∞ K∞

]
=: P+L,

where
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P =
[

β P β̃ P
β̃ P β P

]
, K∞ =

[
K∞ K̃∞
K̃∞ K∞

]
and L = K I+K∞.

The homogeneous problem (P +L)ϕ = 0 can be rewritten as

L
−1

P ϕ̃ + ϕ̃ = 0. (4.24)

Let e1 = [1, 0]T and e2 = [0, 1]T . By expressing P ϕ̃ explicitly and taking the inner product of (4.24) with e1 and e2 respec-
tively, the homogeneous problem reduces to (cf. [17])

(M+ I)

[ 〈ϕ,e1〉
〈ϕ,e2〉

]
= 0,

where

M= β

[ 〈L−1e1,e1〉 〈L−1e1,e2〉
〈L−1e1,e2〉 〈L−1e1,e1〉

]
+ β̃

[
0 1
1 0

][ 〈L−1e1,e1〉 〈L−1e1,e2〉
〈L−1e1,e2〉 〈L−1e1,e1〉

]

The eigenvalues for M + I are

λ1(k) = 1 + (β(k) + β̃(k))
(〈L−1e1,e1〉 + 〈L−1e1,e2〉

)
, (4.25)

λ2(k) = 1 + (β(k) − β̃(k))
(〈L−1e1,e1〉 − 〈L−1e1,e2〉

)
. (4.26)

The associated eigenvectors are

[1 1]T and [1 − 1]T . (4.27)

Therefore, the scattering resonances of the problem (4.1), or equivalently, the characteristic values of the operator-valued 
function P + L, are the roots of the two analytic functions λ1(k) and λ2(k). The leading order of the resonances are stated 
in the following theorem.

Theorem 4.5. If δ � 1, there exist two sets of resonances, {k�,1}∞�=1 and {k�,2}∞�=1 , for the scattering problem (4.1), and the following 
asymptotic expansions hold:

k�,1 = k(0)
�,1 − 1

πq′
1

(
k(0)
�,1

) · δ ln δ + O (δς ), k�,2 = k(0)
�,2 + 1

πq′
2

(
k(0)
�,2

) · δ ln δ + O (δς ), ς ≥ 1

for �δ � 1. The leading-oder terms k(0)
�,1 and k(0)

�,2 are the roots of real-valued functions q1(k) and q2(k) respectively, where

q1(k) = δ (βi,1(k) + βi,2(k)), q2(k) = δ (βi,1(k) − βi,2(k)).

Proof. From the expression of the eigenvalue in (4.25), and the definition of β(k) and β̃(k) in (4.18), the roots of λ1(k)

satisfy

1 +
[

q1(k)

δ
+ 1

π
ln δ + 1

π
(ln k + γ̃0)

](〈L−1e1,e1〉 + 〈L−1e1,e2〉
) = 0.

We investigate the roots for the leading order terms of λ1(k), which is given by 
q1(k)

δ
+ 1

π
ln δ. This leads to solving the 

following equation:

q1(k) + 1

π
δ ln δ = 0,

and its roots are given by

k̂�,1 = k(0)
�,1 − 1

πq′
1

(
k(0)
�,1

) · δ ln δ + O (δ2 ln2 δ).

An application of Rouche’s theorem gives the desired expansion for λ1(k) = 0. The roots of λ2(k) can be obtained by a 
parallel argument. �
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Fig. 6. The transmittance T over the frequency band {k | k ∈ [1, 10]} computed via the integral equation approach (left) and the difference between the 
transmittance T obtained by two methods (right). δ = 0.1.

Denote the initial guesses for computing the resonances of (2.25) as

k̃� = k̃′
� + i k̃′′

� , � = 1,2,3, · · · , L.

When k(0)
�, jδ < 1, we use the first two terms in the above expansions, k(0)

�, j − 1

πq′
j

(
k(0)
�, j

) · δ ln δ ( j = 1, 2), as the real parts of 

the initial guesses. Otherwise, the real parts of the initial guesses are set as the leading-order values k(0)
�, j ( j = 1, 2). Let the 

real parts, {k̃�}L
�=1, be those values ordered increasingly. Although explicit asymptotic expansion for the imaginary part of 

resonances is not derived explicitly in Lemma 4.5, it is known that true resonances are located in the fourth quadrant of 
the complex plane. Using the fact the resonances for the PEC slit has an oder of O (δ) if δ � 1 (cf. (6.1)), it is expected 
that similar asymptotic expansions will hold for real metals. Hence we choose the imaginary part of the first initial guess 
as k̃′′

1 = −δ. For � ≥ 1, by observing that the field enhancement is weaker as the frequency becomes higher, we set k̃′′
�+1 =

− max1≤p≤� |k̃′′
p |. For the eigenmode (resonant modes) ψ in (2.25), note that the eigenvectors for M + I are given by (4.27). 

Correspondingly, we choose the initial guesses for the resonant modes ψ̃�, j are set as [1, 1, 0, 0] and [1, −1, 0, 0] for j = 1, 2, 
respectively.

5. Numerical examples

In this section, we present various numerical examples to demonstrate the accuracy and effectiveness of the compu-
tational approach. We first validate the accuracy of the integral equation method by comparing the computational results 
with the ones obtained via the vertical mode matching scheme [14,22,23]. The integral equation approach with the initial 
guess strategy is then applied to solve for the resonances of the scattering problem with various slit sizes and permittivity 
values. In the rest of this section, n1 and n2 denotes the number of grid points used to discretize the single and double 
layer integrals (3.15), (3.16), (3.20) and (3.21) over the horizontal and vertical slit boundaries, respectively.

Example 1. We validate the accuracy of the integral equation method in this example. Let the permittivity for the metal 
be εm = −100 + 10i, and consider the metallic structure with the slit size δ = 0.1 and δ = 0.05, respectively. We solve the 
scattering problem with a normal incident plane wave ui . To this end, the single and double layer integrals (3.10)–(3.12) are 
computed by the quadrature rules (3.15) (3.16), (3.20), and (3.21), using n1 = 20 and n2 = 120 for the horizontal and vertical 
slit boundaries, respectively. Figs. 6 and 7 (left) show the transmittance T over the frequency band {k | k ∈ [1, 10]} for the 
slit size δ = 0.1 and δ = 0.05, which are obtained by solving the integral equation (2.24). The transmittance is defined as 
T = P/Pinc , where P is the total power over the bottom gap aperture 
2 and Pinc is the incident power over the aperture 

2. For comparison we apply the vertical mode matching scheme [14,22,23] to the solve the scattering problem (1.1) with 
sufficient number of modes. Figs. 6 and 7 (right) plot the difference between the transmittances obtained by two numerical 
approaches, where the quantity eT is defined by eT = |T − T vm|/|T vm| and T vm is the transmittance computed from the 
vertical mode matching method. It observed that three digits of accuracy are achieved by the integral equation method with 
the specified grid points.

Example 2. The permittivity for the metal is set as εm = −100 + 10i. We compute the resonances for the slit size δ = 0.02, 
0.05, 0.1, and 0.2, respectively. To discretize the integrals (3.10) and (3.12), n1 = 20 and n2 = 80 are used for the horizontal 
and vertical slit boundaries respectively. The tolerance is set as 10−4 for the Newton solver of the eigenvalue problem (2.25).

The first column of Tables 2–5 are the initial-guess values {k̃�}L
�=1 obtained from the strategy discussed in Section 4 for 

given δ values. The second and the third column of Tables 2–5 show the computed resonances {k�}L
�=1 and the correspond-

ing iteration numbers needed to achieve the desired tolerance. In the tables, the resonances are ordered with increasing 
real part. We see that the initial guesses indeed provide good approximations of true resonances, especially for lower fre-
quencies and smaller slit sizes where the leading orders of the asymptotic expansions in Theorem 4.5 are more accurate. 
In addition, from the provided initial-guess values, the Newton solver converges with the given tolerance in only a few 
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Fig. 7. The transmittance T over the frequency band {k | k ∈ [1, 10]} computed via the integral equation approach (left) and the difference between the 
transmittance T obtained by two methods (right). δ = 0.05.

Table 2
Initial guesses and the computed resonances for δ = 0.02.

k̃� k� Iteration numbers

0.7875 − 0.02i 0.7832 − 0.0479i 7
2.7481 − 0.0479i 2.7513 − 0.1642i 8
5.2174 − 0.1642i 5.2983 − 0.1847i 7
7.9051 − 0.1847i 8.0485 − 0.3196i 8
10.6994 − 0.3196i 10.8462 − 0.3399i 8
13.5527 − 0.3399i 13.8351 − 0.4129i 8

Table 3
Initial guesses and the computed resonances for δ = 0.05.

k̃� k� Iteration numbers

1.4590 − 0.05i 1.4524 − 0.0765i 5
4.0096 − 0.0765i 4.0653 − 0.2548i 5
6.7421 − 0.2548i 6.9522 − 0.3069i 6
9.5288 − 0.3069i 9.9177 − 0.4572i 8
12.3391 − 0.4572i 12.8852 − 0.5190i 9

Table 4
Initial guesses and the computed resonances for δ = 0.1.

k̃� k� Iteration numbers

1.8528 − 0.1i 1.8501 − 0.1311i 5
4.4502 − 0.1311i 4.585 − 0.3882i 5
7.1092 − 0.3882i 7.5187 − 0.5136i 6
11.6860 − 0.5136i 10.4920 − 0.7154i 7
14.7178 − 0.7154i 13.5147 − 0.8486i 7

Table 5
Initial guesses and the computed resonances for δ = 0.2.

k̃� k� Iteration numbers

2.0462 − 0.2i 2.0139 − 0.2372i 4
4.5367 − 0.2372i 4.7283 − 0.6256i 5
8.9326 − 0.6256i 7.6572 − 0.9200i 8
12.0765 − 0.9200i 10.5837 − 1.3232i 10
15.2274 − 1.3232i 13.522 − 1.5703i 10

iterations (mostly less than 10 iterations). Hence the proposed computational approach is very efficient for obtaining the 
resonances of the scattering problem.

In order to demonstrate the accuracy of the computed resonances, in Fig. 8 we plot the transmittance T over the 
frequency band {k | k ∈ [0.5, 15]} when a normal incident plane wave ui impinges on the metallic structure with various slit 
sizes. When the incident frequency is close to the real part of certain scattering resonance k� such that the corresponding 
resonant mode is excited, it is expected that the transmission peaks will occur as long as the magnitude for the imaginary 
part of k� is sufficiently small. It is seen from Tables 2–5 that the real parts of resonances correctly reflect the peaks of 
transmissions in Fig. 8, which validates the accuracy of computed resonances. On the other hand, the smaller the magnitude 
for the imaginary part of resonances, the higher the transmittance peaks are. This is also consistent with the resonant 
scattering mechanism.
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Fig. 8. The transmittance T over the frequency band [0.5,15] for various slit sizes.

Table 6
Computed resonances with refined meshes. δ = 0.02.

n1 = 10 n2 = 40 n1 = 20 n2 = 80 n1 = 40 n2 = 160 n1 = 60 n2 = 200

0.7656 − 0.0499i 0.7832 − 0.0479i 0.7691 − 0.0440i 0.7696 − 0.0436i
2.7379 − 0.1755i 2.7513 − 0.1642i 2.7390 − 0.1648i 2.7404 − 0.1638i
5.2698 − 0.1966i 5.2983 − 0.1847i 5.2933 − 0.1966i 5.2932 − 0.1958i
7.9744 − 0.3229i 8.0485 − 0.3196i 8.0414 − 0.3371i 8.0422 − 0.3337i
10.6749 − 0.2643i 10.8462 − 0.3399i 10.9015 − 0.3215i 10.9017 − 0.3234i
13.3940 − 0.3369i 13.8351 − 0.4129i 13.9003 − 0.4664i 13.8975 − 0.4619i

Table 7
Computed resonances with refined meshes. δ = 0.1.

n1 = 10 n2 = 40 n1 = 20 n2 = 80 n1 = 40 n2 = 160 n1 = 60 n2 = 200

1.8473 − 0.1246i 1.8501 − 0.1311i 1.8513 − 0.1318i 1.8513 − 0.1317i
4.6374 − 0.3645i 4.5851 − 0.3882i 4.5846 − 0.4188i 4.5856 − 0.4166i
7.5726 − 0.6238i 7.5187 − 0.5136i 7.5114 − 0.4881i 7.5106 − 0.4896i
10.5410 − 0.6004i 10.4920 − 0.7154i 10.5743 − 0.7727i 10.5698 − 0.7681i
13.5452 − 0.8596i 13.5147 − 0.8486i 13.4566 − 0.8557i 13.4609 − 0.8603i

We would also like to remark on the robustness of the numerical approach by the observation that (i) the iterative 
eigen-solver indeed converges with the obtained initial-guess values; (ii) for each δ, all resonances in the above frequency 
band that lie in the vicinity of the real axis have been successfully solved, since each peak in Fig. 8 corresponds to one 
resonance in Tables 2–5.

Finally, we study the convergence behavior of the numerical method with increasing grid points over the slit boundary. 
To this end, let us set δ = 0.02 and 0.1 respectively. Tables 6 and 7 give the computed resonances with various n1 and n2
values. We observe the convergence of the computed values when the mesh is refined. Furthermore, two digits of accuracy 
are obtained when n1 = 20 and n2 = 80, and three digits of accuracy are obtained when n1 = 40 and n2 = 160.

Example 3. We set the permittivity for the metal as εm = −20 + 2i in the example. Again, n1 = 20 and n2 = 80 are used 
for discretizing the integrals over the horizontal and vertical slit boundaries respectively, and the tolerance for the Newton 
solver is 10−4.

We compute the resonances for the slit size δ = 0.02, 0.05, 0.1, and 0.2, respectively. The initial guesses for the 
resonances are shown in the first column of Tables 8–11 for various slit sizes. It is seen that they also provide good ap-
proximations of true resonances. Starting from these initial-guess values, the Newton method converges and the computed 
resonances are shown in the second column of Tables 8–11. The corresponding iteration numbers are given in the third 
columns, which demonstrate the robustness and the efficiency of the proposed computational approach.
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Table 8
Initial guesses and the computed resonances for δ = 0.02.

k̃� k� Iteration numbers

1.0514 − 0.02i 0.9064 − 0.3279i 6
2.701 − 0.3279i 2.6780 − 0.1963i 6
4.7417 − 0.3279i 4.8147 − 0.4001i 7
7.0393 − 0.4001i 7.1860 − 0.2835i 6
9.5072 − 0.4001i 9.8259 − 0.4966i 9
12.0915 − 0.4966i 12.3633 − 0.3438i 9

Table 9
Initial guesses and the computed resonances for δ = 0.05.

k̃� k� Iteration numbers

0.7125 − 0.05i 0.5880 − 0.06154i 8
2.6093 − 0.0616i 2.6430 − 0.3223i 12
5.0005 − 0.3222i 5.1897 − 0.1900i 7
7.5861 − 0.3222i 8.0308 − 0.4645i 14
10.2648 − 0.4645i 10.7828 − 0.2818i 14
12.9943 − 0.4645i 13.9094 − 0.5254i 20

Table 10
Initial guesses and the computed resonances for δ = 0.1.

k̃� k� Iteration numbers

1.1923 − 0.1i 1.1517 − 0.0627i 6
3.504 − 0.0626i 3.7293 − 0.4508i 11
6.0496 − 0.4508i 6.4636 − 0.2497i 7
10.383 − 0.4508i 9.5812 − 0.6125i 11
13.4649 − 0.6125i 12.2692 − 0.4306i 17

Table 11
Initial guesses and the computed resonances for δ = 0.2.

k̃� k� Iteration numbers

1.5878 − 0.2i 1.5658 − 0.1011i 8
3.9938 − 0.1012i 4.4712 − 0.6928i 9
8.2869 − 0.6928i 7.119 − 0.4686i 7
11.4062 − 0.6928i 10.4770 − 1.0821i 11
14.5419 − 1.0821i 13.343 − 2.0182i 11

For a given δ, it is observed from Fig. 9 that the peaks for transmittance T are consistent with the locations of the 
computed resonances, which confirms the accuracy of the integral equation method. Finally, for each δ, by noting that each 
peak in Fig. 9 corresponds to one resonance in Tables 8–11, we see that all resonances in the above frequency band that lie 
in the vicinity of the real axis are successfully solved. This again reflects the robustness of the proposed numerical method.

6. Computation of resonances for the PEC slit

In this section, we discuss briefly the computational framework when the permittivity |εm| → ∞ such that the metallic 
slab becomes a perfect conductor. This yields zero Neumann boundary condition along horizontal and vertical the metal-
vacuum interfaces. In particular, the system of integral equations (2.25) is reduced to the ones formulated over the slit 
apertures 
1 and 
2 only, by observing that the contribution from the slit walls 
3 and 
4 vanishes as |εm| → ∞. Al-
ternatively, the perfect conductor model can be viewed as the limiting case for the approximate scattering model (4.1)
such that ∂ν ũ = 0 on 
3 and 
4. This also leads to the system of integral equations (4.11) defined on the slit apertures, 
where the interior Green’s function gi(x, y) is now given by the Green’s function Gs(x, y) for the slit geometry defined 
in (2.5). The scattering resonances are computed by solving the homogeneous problem corresponding to (4.11) and with 
gi(x, y) = Gs(x, y). We apply the Newton’s method to solve the eigenvalue problem, where the asymptotic expansions of 
the resonances for the case of δ � 1 are used as initial guesses. Such asymptotic expansions have been derived in [17]. We 
state the result in the following and refer to Theorem 4.4 in [17] for details.
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Fig. 9. The transmittance T over the frequency band [0.5,15] for various slit sizes.

Table 12
Initial guesses and the computed resonances for δ = 0.02.

k̃� k� Iteration numbers

2.9682 − 0.0628i 2.9745 − 0.0567i 2
5.9702 − 0.0567i 6.000 − 0.1139i 3
8.9553 − 0.1139i 9.0463 − 0.1700i 3
11.9404 − 0.1670i 12.1052 − 0.2246i 4

Theorem 6.1. If δ � 1, the resonances of the scattering problem (1.1) when |εm| = ∞ are given by

k� = �π + 2� · δ ln δ + C� · δ + O (δ2 ln2 δ)

for �δ � 1, where C� is a complex constant independent of δ and attains negative imaginary part.

We apply the integral equation method to compute the resonances when the slit size δ = 0.02, 0.05, 0.1, and 0.2, 
respectively. To discretize the single-layer integral operators in (4.11), we set the number of grid points as n1 = 40, and the 
tolerance for the Newton solver as 10−4.

The strategy for choosing initial guesses {k̃�}L
�=1 is similar to that of the real metal case in Section 4, except that the 

complex-valued O (δ)-term is now given explicitly for the PEC slit. As such we use the first three terms in the asymptotic 
expansion for the initial guess k̃1. The obtained initial-guess values {k̃�}L

�=1, which are good approximations of true reso-
nances, are shown in the first column of Tables 12–15 for various slit sizes. The second columns of Tables 12–15 are the 
computed resonances {k�}L

�=1 obtained by solving the homogeneous equations (4.11) and starting from the initial-guess val-
ues. The corresponding iteration numbers are given in the third columns, which demonstrate the efficiency of the integral 
equation method. For fixed δ, each peak of the transmittance T in Fig. 10 corresponds to one resonance in Tables 12–15, 
and the frequencies of the peaks are consistent with the locations of the computed resonances. Therefore, we see that all 
resonances in the above frequency band that lie in the vicinity of the real axis are solved accurately.
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Table 13
Initial guesses and the computed resonances for δ = 0.05.

k̃� k� Iteration numbers

2.7998 − 0.1571i 2.8203 − 0.1275i 3
5.6840 − 0.1275i 5.7599 − 0.2558i 4
8.5261 − 0.2558i 8.7460 − 0.3769i 4
11.3681 − 0.3769i 11.7601 − 0.4902i 5
14.2101 − 0.4902i 14.7934 − 0.5964i 5

Table 14
Initial guesses and the computed resonances for δ = 0.1.

k̃� k� Iteration numbers

2.5965 − 0.3142i 2.6378 − 0.2227i 4
5.3622 − 0.2227i 5.4910 − 0.4451i 4
8.0432 − 0.4451i 8.4239 − 0.6463i 5
10.7243 − 0.6463i 11.4005 − 0.8291i 6
13.4054 − 0.8291i 14.4046 − 0.9982i 7

Table 15
Initial guesses and the computed resonances for δ = 0.2.

k̃� k� Iteration numbers

2.3286 − 0.6283i 2.3838 − 0.3635i 5
4.9956 − 0.3635i 5.1314 − 0.7273i 5
7.4935 − 0.7273i 8.0008 − 1.0477i 6
9.9913 − 1.0477i 10.9308 − 1.3435i 7
12.4891 − 1.3435i 13.9010 − 1.6311i 9

Fig. 10. The transmittance T over the frequency band [0.5,15] for various slit sizes.

Appendix A. Green’s functions in the layered medium

We derive explicitly the Green’s function when y ∈ �1. The Fourier transform of a function g(t) is defined by

ĝ(ξ) :=
∞∫

g(t)e−iξtdt.
−∞
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Taking the Fourier transform of (2.1) with respect to the variable x1 − y1, the Green’s function in the Fourier domain satisfies

Ĝ ′′
1(ξ ; x2, y2) + (k2ε(x2) − ξ2)Ĝ1(ξ ; x2, y2) = δ̃(x2 − y2), −∞ < x2 < ∞,

[Ĝ1(ξ ; x2, y2)] =
[

1

ε
Ĝ ′

1(ξ ; x2, y2)

]
= 0, x2 = 0, x2 = 1.

Let

ρ0(ξ) =
√

k2 − ξ2, ρm(ξ) =
√

k2εm − ξ2,

p(ξ) = (εm + 1)
(
ρ2

0 (ξ)ε2
m − ρ2

m(ξ)
)

− (εm − 1) (ρ0(ξ)εm − ρm(ξ))2 ,

q(ξ) = (ρ0(ξ)εm − ρm(ξ))2 ei2ρm − (ρ0(ξ)εm + ρm(ξ))2 .

Then the solution

Ĝ1(ξ ; x2, y2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

2iρ0
eiρ0|x2−y2| + R eiρ0(x2+y2−2) x2 > 1,

T1 eiρ0(y2−1)eiρm(1+x2) + T2 eiρ0(y2−1)eiρm(1−x2) 0 < x2 < 1,

T3 eiρ0(y2−x2−1) x2 < 0,

where the coefficients

R = 1

2iρ0q
·
(
ρ2

0ε2
m − ρ2

m

)(
ei2ρm − 1

)
, T1 = i

q
· εm(ρm − ρ0εm)

T2 = i

q
· εm(ρm + ρ0εm), T3 = 2i

q
· εmρmeiρm .

We decompose the Green’s function as the sum of a singular part and a smooth part. To this end, let us slit the coefficient 
R as R := R0 + R1, where

R0 = εm − 1

εm + 1
· 1

2iρ0
and R1 = k2εm(εm − 1)

i(εm + 1)
· ρ0εm + ρm

ρ0 (ρo + ρm)q
+ 1

2i(εm + 1)
· pei2ρm

ρ0q
. (A.1)

For 0 < x2 < 1, we split Ĝ1(ξ ; x2, y2) as

εm

εm + 1
· 1

iρ0
eiρ0(y2−x2) +

[
T1 eiρ0(y2−1)eiρm(1+x2) + T2 eiρ0(y2−1)eiρm(1−x2) − εm

εm + 1
· 1

iρ0
eiρ0(y2−x2)

]
. (A.2)

Apply the inverse Fourier transform for Ĝ1(ξ ; x2, y2) by using the decomposition (A.1), (A.2) and the identity

1

2π

∞∫
−∞

1

2iρ0(ξ)
eiρ0(ξ)|x2−y2|eiξ(x1−y1)dξ = − i

4
H (1)

0 (k|x − y|),

we obtain

G1(x, y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− i

4

(
H (1)

0 (k|x − y|) + εm − 1

εm + 1
H (1)

0 (k|x′ − y|)
)

+ g11(x, y), x ∈ �1,

− iεm

2(εm + 1)
H (1)

0 (k|x − y|) + g12(x, y)), x ∈ �2,

g13(x, y), x ∈ �3,

where x′ is the reflection of x by x2 = 1. The functions g1 j ( j = 1, 2, 3) are the Sommerfeld integrals given by

g11(x, y) = 1

2π

∞∫
−∞

R1(ξ)eiρ0(x2+y2−2)eiξ(x1−y1) dξ

= k2εm(εm − 1)

iπ(εm + 1)

∞∫
0

ρ0(ξ)εm + ρm(ξ)

ρ0(ξ) (ρ0(ξ) + ρm(ξ))q(ξ)
eiρ0(ξ)(x2+y2−2) cos(ξ(x1 − y1))dξ

+ 1

2π i(εm + 1)

∞∫
p(ξ)ei2ρm(ξ)

ρ0(ξ)q(ξ)
eiρ0(ξ)(x2+y2−2) cos(ξ(x1 − y1))dξ ; (A.3)
0
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g12(x, y) = 1

2π

∞∫
−∞

[
T1 eiρ0(y2−1)eiρm(1+x2) + T2 eiρ0(y2−1)eiρm(1−x2) − εm

εm + 1
· 1

iρ0
eiρ0(y2−x2)

]
eiξ(x1−y1) dξ

= iεm

π

∞∫
0

ρm(ξ) − ρ0(ξ)εm

q(ξ)
eiρ0(ξ)(y2−1)eiρm(ξ)(1+x2) cos(ξ(x1 − y1))dξ

+ iεm

π

∞∫
0

[
ρm(ξ) + ρ0(ξ)εm

q(ξ)
eiρ0(ξ)(y2−1)eiρm(ξ)(1−x2)

+ 1

εm + 1
· 1

ρ0(ξ)
eiρ0(ξ)(y2−x2)

]
cos(ξ(x1 − y1))dξ (A.4)

g13(x, y) = 1

2π

∞∫
−∞

T3 eiρ0(y2−x2−1)eiξ(x1−y1) dξ

= 2iεm

π

∞∫
0

ρm(ξ)

q(ξ)
eiρm(ξ)eiρ0(ξ)(y2−x2−1) cos(ξ(x1 − y1))dξ. (A.5)

For y ∈ �2, by analogous derivations, it can be shown that

G2(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

− i

2

1

εm + 1
H (1)

0 (km|x − y|) + g21(x, y), x ∈ �1,

− i

4

(
H (1)

0 (km|x − y|) + 1 − εm

1 + εm
H (1)

0 (km|x′ − y|) + 1 − εm

1 + εm
H (1)

0 (km|x′′ − y|)
)

+ g22(x, y), x ∈ �2,

− i

2

1

εm + 1
H (1)

0 (km|x − y|) + g23(x, y), x ∈ �3,

where x′ and x′′ are the reflection of x by x2 = 1 and x2 = 0, respectively. The functions g2 j ( j = 1, 2, 3) are the Sommerfeld 
integrals given by

g21(x, y) = i

π

∞∫
0

ρm(ξ) − ρ0(ξ)εm

q(ξ)
eiρ0(ξ)(x2−1)eiρm(ξ)(1+y2) cos(ξ(x1 − y1))dξ

+ i

π

∞∫
0

[
ρm(ξ) + ρ0(ξ)εm

q(ξ)
eiρ0(ξ)(x2−1)eiρm(ξ)(1−y2)

+ 1

εm + 1
· 1

ρm(ξ)
eiρm(ξ)(x2−y2)

]
cos(ξ(x1 − y1))dξ ; (A.6)

g22(x, y) = ik2εm(εm − 1)

π(εm + 1)

∞∫
0

ρ0(ξ)εm + ρm(ξ)

ρm(ξ) (ρ0(ξ) + ρm(ξ))q(ξ)

(
eiρ0(ξ)(x2+y2) + eiρ0(ξ)(2−x2−y2)

)
cos(ξ(x1 − y1))dξ

+ i

2π

∞∫
0

(ρ0(ξ)εm − ρm(ξ))2ei2ρm

ρm(ξ)q(ξ)

(
eiρm(ξ)(x2−y2) + eiρm(ξ)(y2−x2)

)
cos(ξ(x1 − y1))dξ (A.7)

− i(εm − 1)

2π(εm + 1)

∞∫
0

(ρ0(ξ)εm − ρm(ξ))2ei2ρm

ρm(ξ)q(ξ)

(
eiρm(ξ)(x2+y2) + eiρm(ξ)(2−x2−y2)

)
cos(ξ(x1 − y1))dξ ;

g23(x, y) = i

π

∞∫
0

ρm(ξ) − ρ0(ξ)εm

q(ξ)
e−iρ0(ξ)x2 eiρm(ξ)(2−y2) cos(ξ(x1 − y1))dξ

+ i

π

∞∫ [
ρm(ξ) + ρ0(ξ)εm

q(ξ)
e−iρ0(ξ)x2 eiρm(ξ)y2
0
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+ 1

εm + 1
· 1

ρm(ξ)
eρm(ξ)(x2−y2)

]
cos(ξ(x1 − y1))dξ. (A.8)

Appendix B. Derivations of (2.16)

Let 
t := {x2 = 1} and 
b := {x2 = 0} be the top and bottom of the metallic slab respectively. The unit normal direction 
ν is pointing to the domains �1 and �2. For y ∈ �1, we apply the Green’s second identity in the domain �1 and �3 to 
obtain

us(y) =
∫

t

G1(x, y)
∂us(x)

∂νx
− ∂G1(x, y)

∂νx
us(x)dsx, (B.1)

0 =
∫

b

G1(x, y)
∂us(x)

∂νx
− ∂G1(x, y)

∂νx
us(x)dsx. (B.2)

Applying the Green’s second identity in the domain �−
δ and �+

δ respectively, we have

0 =
∫


−
t ∪
−

b

∂G1(x, y)

∂νx
us(x) − G1(x, y)

∂us(x)

∂νx
dsx +

∫

3

G1(x, y)
∂us(x)

∂νx
− ∂G1(x, y)

∂νx
us(x)dsx, (B.3)

0 =
∫


+
t ∪
+

b

∂G1(x, y)

∂νx
us(x) − G1(x, y)

∂us(x)

∂νx
dsx +

∫

4

G1(x, y)
∂us(x)

∂νx
− ∂G1(x, y)

∂νx
us(x)dsx. (B.4)

In the above, the line segments


−
t := {x ∈ 
t | x1 < 0}, 
+

t := {x ∈ 
t | x1 > δ},

−

b := {x ∈ 
b | x1 < 0}, 
+
b := {x ∈ 
b | x1 > δ}.

Taking the sum (B.1) + (B.2) + 1

εm
× ((B.3) + (B.4)) and using the continuity conditions for us and G1 along the metal-

vacuum interfaces, it follows that

us(y) =
4∑

j=1

∫

 j

G1(x, y)

(
γ j

∂us(x)

∂νx

)
−

(
γ j

∂G1(x, y)

∂νx

)
us(x)dsx.

The formula can be obtained similarly for y ∈ �2, �−
δ and �+

δ respectively.

Appendix C. Eigenvalues and eigenmodes for the operator Ln

The operator Ln is defined as

Ln v :=
(

1

ε̃(x1)
v ′(x1)

)′
+

(
k2 − (nπ)2

ε̃(x1)

)
v(x1), −∞ < x1 < ∞,

where the permittivity ε̃(x1) = 1 for x1 ∈ (0, δ) and ε̃(x1) = ε′
m for x1 �= [0, δ]. We solve the eigenvalue problem Ln v = −λv . 

To this end, we express the solution as

v(x1) =

⎧⎪⎨
⎪⎩

c1eζnx1 x1 < 0,

c3eiαnx1 + c4e−iαnx1 0 < x1 < δ,

c2eζn(δ−x1) x1 > δ,

where ζn(λ) = √
(nπ)2 − ε′

mλ, αn(λ) = √
λ − (nπ)2. Imposing the continuity conditions leads to a linear system for the 

coefficients c1, c2, c3 and c4, and the condition for the existence of non-trivial solution v is given by

eiαn(λ)δ = ±ζn(λ) − iαn(λ)ε′
m

ζn(λ) + iαn(λ)ε′
m

.

We restrict the discussion for λ ∈ ((nπ)2, +∞). Then the above nonlinear equation leads to

αnδ − pπ = arg
ζn − iαnε

′
m
′ , p = 0,1,2,3, · · ·
ζn + iαnεm
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If |ε′
m| 	 1, then the coefficient αn is given by

αnpδ ≈ pπ + θ0 ≈ (p + 1)π, where θ0 = 2 arctan
√

|ε′
m| ≈ π. (C.1)

Correspondingly, the eigenvalues

λ = λnp ≈ (nπ)2 +
(

pπ + θ0

δ

)2

and ζnp =
√

(nπ)2 − ε′
mλnp, p = 0,1,2,3, · · · . (C.2)

The eigenmodes are

vnp(x) =

⎧⎪⎨
⎪⎩

cnp(1 + eiαnpδ)eζnp x1 , x1 < 0,

cnp(eiαnp x1 + e−iαnp(δ−x1)), 0 < x1 < δ,

cnp(1 + eiαnpδ)eζnp(δ−x1), x1 > δ,

and

vnp(x) =

⎧⎪⎪⎨
⎪⎪⎩

cnp(1 − eiαnpδ)eζnp x1 , x1 < 0,

cnp(eiαnp x1 − e−iαnp(δ−x1)), 0 < x1 < δ,

−cnp(1 − eiαnpδ)eζnp(δ−x1), x1 > δ,

for odd and even p respectively, where the constants cnp are normalization constants such that ||vnp ||L2(−∞,∞) = 1. Recall 
that αnp and ζnp are given by (C.1) and (C.2). By carrying out standard asymptotic analysis, we have the following lemma:

Lemma C.1. Let δ � 1 and |ε′
m| ∼ O (1/δ), then the following holds:

vnp(x1) =
√

2

δ

(
cos

(
(p + 1)πx1

δ

)
+ O (δs)

)
, s ≥ 1/2, for x1 ∈ (0, δ),

vnp(x1) ∼ O
(

e−r
√|ε′

m|/δ) for x1 �= [0, δ],
where r is the distance of x1 from the interval (0, δ).
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