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Abstract

In this paper, we prove the existence of a bound state in a waveguide that consists
of two semi-infinite periodic structures separated by an interface. The two periodic
structures are perturbed from the same periodic medium with a Dirac point and they
possess a common band gap enclosing the Dirac point. The bound state, which is called
interface mode here, decays exponentially away from the interface with a frequency
located in the common band gap and can be viewed as a bifurcation from the Dirac
point. Using the layer potential technique and asymptotic analysis, we first characterize
the band gap opening for the two perturbed periodic media and derive the asymptotics
of the Bloch modes near the band gap edges. By formulating the eigenvalue problem
for the waveguide with two semi-infinite structures using a boundary integral equation
over the interface and analyzing the characteristic values of the associated boundary
integral operator, we prove the existence of the interface mode for the waveguide when
the perturbation of the periodic medium is small.

1 Introduction

1.1 Background

The localization of acoustic and electromagnetic waves allows for the confinement of waves
in a small volume or guiding the waves along the desired direction, and therefore has signifi-
cant applications in the design of novel acoustic and optical devices [30, 31, 33, 34]. Several
strategies have been proposed to achieve wave localization in different settings. For instance,
a periodic medium with a single defect by changing the medium in a finite region can induce
the so-called defect modes that are localized near the defect region. Such perturbations do
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not change the essential spectrum of the underlying differential operators but create isolated
eigenvalues of finite multiplicity in a band gap of the periodic medium, with the eigenmodes
decaying exponentially [3, 6, 19, 20]. Typically, the perturbations in such settings need to
be large to create the defect modes [21, 26, 23]. Another way to create wave localization is
by perturbing the periodic medium randomly in the whole domain. It can be shown that
localized wave modes arise in the band gaps of the periodic medium, which is known as the
Anderson localization [16, 17, 18, 33].

In this paper, we explore the idea of creating wave localization in a waveguide by perturbing
a periodic structure differently along the positive and negative parts of the waveguide axis. In
particular, we prove the existence of a localized wave mode (called bound state or interface
mode) for such a configuration near the Dirac point of the periodic medium, which is a special
vertex in the spectral band structure when two dispersion curves (surfaces) intersect in a
linear (conic) manner. The investigation of Dirac points has attracted intense research efforts
in recent years due to their important role in topological insulators. For example, Dirac
points have been shown to occur in photonic graphene [1, 14] and photonic/phononic models
with honeycomb lattices [4, 7, 28]. In general, topological phase transition takes place at
a Dirac point. As such, near a Dirac point, eigenmodes localized around an interface can
be generated by applying proper perturbations to the periodic operator on both sides of the
interface. The bifurcation of eigenvalues from Dirac points was rigorously analyzed for one-
dimensional Schrödinger operators [13], two-dimensional Schrödinger operators [15, 12, 10],
and two-dimensional elliptic operators with smooth coefficients [27], all of which use domain
wall models such that two periodic materials are “connected” adiabatically over a length scale
that is much larger than the period of the structure. Note that such an adiabatic domain wall
model may not be realistic for photonic/phononic materials with a sharp interface. In this
work, we investigate the model when two different periodic media are glued directly such that
the medium coefficient attains a jump across the interface. Our goal is to prove the existence
of an interface mode near a Dirac point in the context of a waveguide, for which the interface
between two periodic media is located at the origin of the waveguide axis. Such an interface
mode is bifurcated from the Dirac point, and the corresponding eigenfrequency is located in
the common band gap of the two periodic media enclosing the Dirac point. Furthermore, we
prove that the eigenspaces at the band edges are swapped for the two periodic media, which
demonstrates the topological phase transition of the medium at the Dirac point.

We point out that a bound state/interface mode arising from the bifurcation of a Dirac
point in a one-dimensional system has been investigated under several different configurations.
The existence and stability of interface mode eigenvalues were established by the transfer ma-
trix method and the oscillatory theory for Sturm-Liouville operators in [29]. In another work,
[35], the bulk-interface correspondence for 1D topological materials with inversion symmetry
was established. Defect modes for 1D dislocated periodic media were studied in [11] and it
was shown that the defect modes arise as bifurcations from the Dirac operator eigenmodes.
Finally, the existence of a stable interface mode in a finite chain of high contrast bubbles
that consists of two chains of different topological properties was reported numerically [2].
However, the analytical techniques in [11, 29, 35] only apply particularly to the 1D problems.

In this paper, we develop a new approach based on layer potential techniques and asymp-
totic analysis to investigate the existence of in-gap bound states for the waveguide. The
approach overcomes the difficulty of discontinuous coefficients for the inhomogeneous medium
in the waveguide and addresses the challenges brought by the presence of the sharp interface
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Figure 1: The waveguide with periodically arranged obstacles.

separating two different periodic media. The mathematical framework can be applied to study
interface or edge modes in other photonic/phononic systems, which will be reported elsewhere.
We refer [5] for a systematic review of the application of layer potential technique to various
wave propagation problems in photonic/phononic materials consisting of subwavelength res-
onators.

1.2 Statement of main results

We start with the periodic waveguide in Figure 1 that attains a Dirac point in its band
structure. Let Γ− = R×{0} and Γ+ = R×{1

2
} be two parallel walls of the waveguide in the

plane R2, and let Γ = {0} × (0, 1
2
). Denote Z∗ := Z\{0}. Here 0 is excluded from the index

set in order to simplify the notation in the sequel. An array of identical obstacles {Dn}n∈Z∗
are arranged periodically in the center of the waveguide along the x1-direction with period
1/2. Here Dn = zn + D with zn = (2|n|−1

4
sgn(n), 1

4
) for n ∈ Z∗ and D is an open set centered

at the origin. The domain outside the obstacles is denoted by Ω := R× (0, 1
2
)\ ∪n∈Z∗ Dn. We

consider a time-harmonic scalar wave that propagates in the waveguide at frequency ω. The
wave field v satisfies the following Helmholtz equation

∆v(x) + ω2v(x) = 0 for x ∈ Ω. (1.1)

We impose the following Neumann boundary condition on the waveguide walls

∂v(x)

∂x2

= 0 for x ∈ Γ−
⋃

Γ+, (1.2)

and the Dirichlet boundary condition on the boundaries of the obstacles

v(x) = 0 for x ∈ ∪n∈Z∗∂Dn. (1.3)

We point out that the above assumptions on the boundary conditions are not essential. The
method developed in the paper applies to other boundary conditions; for instance, the Neu-
mann boundary condition can be imposed over the obstacle boundaries.

We shall make the following assumptions on the spectrum of the operator −∆ for the
above period-1/2 structure Ω. The reader is referred to Section 2.1 for terminologies arising
from the Floquet-Bloch theory.

Assumption 1.1. (1) The first spectral band (p, µ1(p)) of the period-1/2 structure Ω is
smooth for p ∈ [−2π, 2π], and can be extended analytically in a complex neighborhood of
R. Moreover, the eigenspace corresponding to the first spectral band is one dimensional
and is given by span{v1(·; p)}. The analytic continuation of v1(·; p) from R to its complex
neighborhood also holds.

3



(2) The slope of µ1(·) at p = π satisfies µ′1(π) = α∗ > 0.

(3) λ∗ := µ1(π) is not in the point spectrum of the period-1/2 structure.

(4) µ1(p) 6= λ∗ for p 6= π, and consequently λ∗ = max0≤p≤π µ1(p) = minπ≤p≤2π µ1(p). In
addition, the maximum of the first spectral band is smaller than or equal to the minimum
of the second spectral band.

Remark 1.2. All the statements in Assumption 1.1 can be proved rigorously in the case when
the size of the particle D is sufficiently small by using asymptotic analysis.

Remark 1.3. It is generally believed that the point spectrum is empty for a periodic structure
shown in Figure 1. However, as pointed out in [25], its rigorous proof is an open question.

Remark 1.4. The statement (4) in Assumption 1.1 is similar to the spectral no-fold assump-
tion in [15] (cf. Definition 7.1). We conjecture that it is not essential for the main result
Theorem 1.11 to hold. This issue shall be investigated in a separate paper.

In the sequel, we shall treat the above period-1/2 structure Ω as a period-1 structure whose
primitive cell is given by Y = (0, 1) × (0, 1

2
) and the associated Brillouin zone is [0, 2π]. For

the period-1 structure, each period consists of two obstacles. We denote by (λn(p), un(·; p))
(n ≥ 1) the eigenpairs for the n-th spectral band. Note that the spectral band structure of the
period-1 structure can be obtained by ‘folding’ the bands of the period-1/2 structure. This
allows for the creation of a Dirac point (p∗ = π, λ∗) in the spectrum of the period-1 structure
in the Brillouin zone as stated in the following proposition.

Proposition 1.5. A linear band crossing occurs at (p∗, λ∗) between the first and second dis-
persion curves of the period-1 structure Ω with the following properties:

(1) λ∗ = λ1(p∗) = λ2(p∗), and λ∗ is an eigenvalue of multiplicity 2.

(2) Denote by µ2(p) := µ1(2π − p) and v2(·; p) := v1(·; 2π − p), then the first and second
spectral bands and the corresponding eigenfunctions can be chosen as below:

λ1(p) =

{
µ1(p), p ∈ [0, π),

µ2(p), p ∈ [π, 2π],
u1(·, p) =

{
v1(·; p), p ∈ [0, π),

v2(·; p), p ∈ [π, 2π],

and

λ2(p) =

{
µ2(p), p ∈ [0, π),

µ1(p), p ∈ [π, 2π],
u2(·, p) =

{
v2(·; p), p ∈ [0, π),

v1(·; p), p ∈ [π, 2π].

Remark 1.6. The function v1(·; p) above stands for the Bloch eigenmode when the primitive
cell is (0, 1

2
)×(0, 1

2
). Specifically, v1(·; p) satisfies the quasi-periodic boundary condition v1(x1+

1
2
, x2; p) = ei

p
2 v1(x1, x2; p).

We assume that the periodic structure Ω attains reflection symmetry, which is a conse-
quence of the following assumption.

Assumption 1.7. The obstacle D attains the reflection symmetry such that its boundary ∂D
is parameterized by {(θ, r(θ)) : 0 ≤ θ ≤ 2π} in the polar coordinate, in which r(θ) = r(π − θ)
for 0 ≤ θ ≤ π.
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Figure 2: Waveguide with perturbations: (a) The distance between each pair of two obstacles
in one periodic cell is 1

2
− 2δ; (b) The distance between each pair of two obstacles in one

periodic cell is 1
2

+ 2δ; (c) The waveguide obtained by gluing the structures in (a) and (b)
along the interface Γ.

We have the following corollary for the eigenmodes at the Dirac point (p∗, λ∗).

Corollary 1.8. Under Assumptions 1.1 and 1.7, the eigenmodes at the Dirac point (p∗, λ∗) can
be chosen to be odd and even functions with respect to x1. More precisely, span{u1(·; π), u2(·; π)} =
span{φ1, φ2} with

φ1(−x1, x2) = −φ1(x1, x2), φ2(−x1, x2) = φ2(x1, x2).

Let

ϕ1(x) = (∂nφ1|∂D1(x+ z1), ∂nφ1|∂D2(x+ z2))T ∈ (H−
1
2 (∂D))2, (1.4)

ϕ2(x) = (∂nφ2|∂D1(x+ z1), ∂nφ2|∂D2(x+ z2))T ∈ (H−
1
2 (∂D))2, (1.5)

then
ϕ1 = (ϕref , ϕ), ϕ2 = (ϕ,−ϕref ),

for some real-valued function ϕ ∈ H− 1
2 (∂D) and ϕref (x1, x2) := ϕ(−x1, x2).

Proof. See Appendix A.

For ease of notation, we denote vi = vi(·, π) for i = 1, 2.

Remark 1.9. The eigenmodes φ1, φ2 introduced in the above lemma are linear combinations
of v1 and v2. We note that φ1|Γ vanishes due to the odd parity. Thus both v1|Γ and v2|Γ are
proportional to φ2|Γ. This relationship will be used later.
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For technical reasons, we make the following assumption which guarantees the analyticity
of the Green’s function for the empty waveguide, and will be used in the proof of Proposition
3.5.

Assumption 1.10. The Dirac energy level λ∗ is away from the singular frequencies such that
λ∗ 6= (2m+ 1)π for m ∈ N.

We now introduce perturbations to the periodic structure along the negative and positive
parts of the waveguide axis. Let 0 < δ � 1. The obstacle Dn is translated to D̃n,δ (n ∈ Z∗)
with the mass center given by

z̃n,δ =

{
zn + δe1, n is even,

zn − δe1, n is odd.

The corresponding structure is depicted in Figure 2(c), which can be viewed as a joint structure
that glues the two semi-infinite periodic structures in Figure 2(a) and 2(b) along the interface

Γ. Define Ω̃δ := R× (0, 1
2
)\
⋃
n D̃n,δ. An interface mode u for the waveguide in Figure 2(c) is

a finite-energy solution to the following spectral problem:
(∆x + λ)u(x;λ) = 0, x ∈ Ω̃δ,

u(x;λ) = 0, x ∈ ∪n∈Z∗∂D̃n,δ,

∂

∂x2

u(x;λ) = 0, x ∈ Γ−
⋃

Γ+.

(1.6)

We define the Sobolev space

H1
b (Ω̃δ; ∆) :=

{
u ∈ H1(Ω̃δ) : ∆u ∈ L2(Ω̃δ),

∂u

∂x2

|Γ−⋃
Γ+ = 0, u|∂D̃n,δ = 0, n ∈ Z∗

}
.

Then an interface mode corresponds to an eigenfunction of the operator

L̃δ : H1
b (Ω̃δ; ∆) ⊂ L2(Ω̃δ)→ L2(Ω̃δ), φ 7→ −∆φ.

Now we can state the main result of the paper as follows:

Theorem 1.11. Under the Assumptions 1.1, 1.7 and 1.10, if t∗ defined in (3.15) is nonzero,
then there exists δ0 > 0 such that for |δ| < δ0, the spectral problem (1.6) attains an eigenpair
(u?, λ?) ∈ L2(Ω̃δ)×R for λ? near λ∗. Moreover,

σp(L̃δ)
⋂(

λ∗ −
∣∣ t∗
γ∗

∣∣δ, λ∗ +
∣∣ t∗
γ∗

∣∣δ) = {λ?},

where γ∗ and t∗ are defined in (3.14). In addition, u? decays exponentially away from the
interface Γ as |x1| → ∞.

Remark 1.12. The assumption t∗ 6= 0 guarantees that the perturbed structures in Figure 2(a)
and 2(b) has a common band gap near the Dirac point (p∗, λ∗) of the unperturbed structure;
See Corollary 3.9. This assumption can be verified when the size of the obstacles is sufficiently
small by using asymptotic analysis.
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1.3 Outline

The rest of the paper is organized as follows. In Section 2, we briefly review the Floquet-
Bloch theory for periodic differential operators and introduce the Green’s functions for periodic
waveguide structures. We also recall the Gohberg-Sigal theory which shall be used in the
investigation of the spectral problem (1.6). In Section 3, we present the asymptotic expansions
of Bloch eigenvalues and eigenfunctions near the Dirac point (p∗, λ∗) for the periodic structures
in Figure 2(a)(b). In particular, we prove that a band gap is opened near the Dirac point after
the perturbation. Furthermore, the eigenspaces at the band edges are swapped for these two
periodic structures. These results are presented in Theorem 3.6 and Corollary 3.9. Finally, in
Section 4, we reformulate the spectral problem (1.6) by using a boundary integral equation
and prove Theorem 1.11 by analyzing the characteristic values of the associated boundary
integral operator.

2 Preliminaries

2.1 Floquet-Bloch theory for periodic structures

For clarity, we focus on the periodic waveguide structure in Figure 1. Let L : H1
b (Ω; ∆) ⊂

L2(Ω) → L2(Ω) be the Laplacian operator. The eigenvalue problem for the waveguide is to
solve for all eigenpairs that satisfy the following equations

(L − λ)u(x;λ) = 0, x ∈ Ω,

u(x;λ) = 0, x ∈ ∪n∈Z∗∂Dn,

∂

∂x2

u(x;λ) = 0, x ∈ Γ−
⋃

Γ+.

(2.1)

To study the spectrum σ(L) of L, we consider a family of operators L(p), where p lies in the
Brillouin zone B := [0, 2π]. More precisely, L(p) is the Laplacian operator restricted to the
function space with the quasi-periodic boundary condition:

L(p) : H1
p,b(Ω; ∆) ⊂ L2

loc(Ω)→ L2
loc(Ω), φ→ −∆φ.

In the above,

H1
p,b(Ω; ∆) :=

{
u ∈ H1

loc(Ω) :∆u ∈ L2
loc(Y ),

∂u

∂x2

|Γ−⋃
Γ+ = 0, u|∂Dn = 0, n ∈ Z∗,

u(x+ e1) = eipu(x),
∂u

∂x1

(x+ e1) = eip
∂u

∂x1

(x)
}
.

For each p ∈ B, the spectral theory for self-adjoint operators (cf. [9, 32]) states that σ(L(p))
consists of a discrete set of real eigenvalues

0 < λ1(p) ≤ λ2(p) ≤ · · · ≤ λn(p) ≤ · · · .

We denote by un(x; p) the eigenfunction associated with the eigenvalue λn(p), which is also
called the n-th Bloch mode at quasi-momentum p. We have the following standard results for
the dispersion relation λn(p) (cf. [25]):

7



0 2π
p

λ

I1

I2

I3

I4

Figure 3: An example of the band structure: the first four bands of the spectrum are depicted
in the figure. Note that there is a spectral gap between the second and third bands.

Proposition 2.1. (1) λn(p) (n ≥ 1) is Lipschitz continuous with respect to p ∈ B;
(2) λn(p) (n ≥ 1) can be periodically extended to p ∈ R with period 2π, i.e. λn(p+2π) = λj(p).
Moreover, λn(p) = λj(−p).

For each integer n, let

λ−n = min
p∈B

λn(p), λ+
n = max

p∈B
λn(p).

The Floquet-Bloch theory states that the spectrum σ(L) is given by

σ(L) =
⋃
p∈B

σ(L(p)) =
⋃
n≥1

In, In :=
[
λ−n , λ

+
n

]
.

We say that a band gap opens between the n-th and n + 1-th band if λ+
n < λ−n+1; See Figure

3 for an example.

2.2 The Green’s function and representation of solutions for the
periodic structure

We present some properties of the Green’s function G(x, y, λ) for the waveguide problem (2.1)
at λ = λ∗, which is defined to be the unique physical solution to the following equations:

(∆x + λ)G(x, y;λ∗) = δ̃(x− y), x, y ∈ Ω,

Gδ(x, y;λ∗) = 0, x ∈ ∪n∈Z∗∂Dn,

∂

∂x2

G(x, y;λ∗) = 0, x ∈ Γ−
⋃

Γ+.

Here δ̃(·) denotes the Dirac delta function. We follow closely the discussions in [22]. The exis-
tence and uniqueness of the Green’s function can be established by using the limiting absorbing
principle, which gives rise to a physical solution to the wave propagation problem (2.1) as the
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limit of the unique finite-energy solution of the corresponding model with absorption when the
absorption tends to zero. More precisely, the Green’s function for the waveguide problem (2.1)
can be defined as the limit of the Green’s function G(x, y;λ + iε) for the waveguide problem
(2.1) with λ being replaced by λ+ iε as ε→ 0.

We apply the Floquet-Bloch theory to derive the asymptotic behavior of G(x, y, λ∗) at
infinity. Recall that (λn(p), un(x; p)), n ≥ 1 are the Bloch eigenpairs associated with the
periodic structure. First, by using the Floquet transform, the following spectral representation
of the Green’s function holds:

G(x, y;λ∗) = lim
ε→0+

G(x, y;λ∗ + iε) =
1

2π
lim
ε→0+

∫ 2π

0

u1(x; p)u1(y; p)

λ∗ − λ1(p) + iε
dp+

1

2π
lim
ε→0+

∫ 2π

0

u2(x; p)u2(y; p)

λ∗ − λ2(p) + iε
dp

+
1

2π

∫ 2π

0

+∞∑
n=3

un(x; p)un(y; p)

λ∗ − λn(p)
dp.

Note that by Proposition 1.5, there holds∫ 2π

0

u1(x; p)u1(y; p)

λ∗ − λ1(p) + iε
dp+

∫ 2π

0

u2(x; p)u2(y; p)

λ∗ − λ2(p) + iε
dp =

∫ 2π

0

v1(x; p)v1(y; p)

λ∗ − µ1(p) + iε
dp+

∫ 2π

0

v2(x; p)v2(y; p)

λ∗ − µ2(p) + iε
dp.

Taking the limit as ε→ 0 yields (see Remark 8 in [22]):

G(x, y;λ∗) =− i

2

v1(x)v1(y)

α∗
+

1

2π
p.v.

∫ 2π

0

v1(x; p)v1(y; p)

λ∗ − µ1(p)
dp

− i

2

v2(x)v2(y)

α∗
+

1

2π
p.v.

∫ 2π

0

v2(x; p)v2(y; p)

λ∗ − µ2(p)
dp

+
1

2π

∫ 2π

0

∑
n≥3

un(x; p)un(y; p)

λ∗ − λn(p)
dp.

(2.2)

Moreover, it can be shown that G admits the following decomposition for fixed y (see Remark
9 in [22]):

G(x, y;λ∗) = G+
0 (x, y;λ∗)− i

v1(x)v1(y)

α∗
, x1 →∞, (2.3)

and

G(x, y;λ∗) = G−0 (x, y;λ∗)− i
v2(x)v2(y)

α∗
, x1 → −∞. (2.4)

where G+
0 (x, y;λ) (G−0 (x, y;λ)) decays exponentially as x1 → +∞ (x1 → −∞). We remark

that (2.3)-(2.4) define the so-called radiation condition for the Green’s function G, with v1

and v2 being the right and left propagating modes respectively.
We present some properties for v1 and v2 in the next two lemmas.

Lemma 2.2. There exists some τ ∈ C s.t. |τ | = 1 and

v2(x1, x2) = τv1(−x1, x2).

Proof. With Remark 1.6 and Assumption 1.7, it is straightforward to check that v1(−x1, x2)
is also a Bloch mode with the same quasi-periodic boundary condition as v2. Then the proof
is completed by recalling that the dimension of the eigenspace is one as stated in Assumption
1.1.

9



Let

V(λ) :=
{
u ∈ H1

loc(Ω) : (∆ + λ)u(x) = 0 in Ω,
∂u

∂x2

∣∣
Γ−

⋃
Γ+

= 0, u
∣∣
∂Dn

= 0, n ∈ Z∗
}
.

Then v1, v2 ∈ V(λ∗). Moreover, we have the following proposition.

Lemma 2.3. The right- and left-propagating modes v1 and v2 satisfy∫
Γ

∂v1

∂x1

v1dx2 =
i

2
µ′1(π) =

i

2
α∗,

∫
Γ

∂v2

∂x1

v2dx2 = − i
2
α∗. (2.5)

Moreover, for each u ∈ V(λ∗) that decays exponentially as x1 →∞, there holds∫
Γ

∂v1

∂x1

udx2 =

∫
Γ

∂u

∂x1

v1dx2 =

∫
Γ

∂v2

∂x1

udx2 =

∫
Γ

∂u

∂x1

v2dx2 = 0. (2.6)

Proof. We consider the following sesquilinear form defined on V(λ):

q(v, w;x) =

∫
Γx

( ∂v
∂x1

w − ∂w

∂x1

v
)
dx2, Γx := {x2 : (x, x2) ∈ Ω}, v, w ∈ V(λ).

It is shown in [22] that q(v, w;x) is independent of x ∈ R, and moreover,

q(vn, vm) = iµ′n(π)δnm, n,m = 1, 2.

Using Lemma 2.2, we have

0 = q(v2, v1) =

∫
Γ

(∂v2

∂x1

v1 −
∂v1

∂x1

v2

)
dx2 = −τ

∫
Γ

(∂v1

∂x1

v1 +
∂v1

∂x1

v1

)
dx2.

This, combined with the equality q(v1, v1) = iµ′1(π) for n = 1, 2, yield
∫

Γ
∂v1
∂x1
v1dx2 = i

2
µ′1(π).

Similarly, we have
∫

Γ
∂v2
∂x1
v2dx2 = − i

2
α∗. Next, since q(vi, u;x) (i = 1, 2) is independent of x,

we have for positive integer N ,∫
Γ

(∂v1

∂x1

u− ∂u

∂x1

v1

)
dx2 = q(v1, u) =

∫
ΓN

(∂v1

∂x1

u− ∂u

∂x1

v1

)
dx2,∫

Γ

(∂v1

∂x1

u+
∂u

∂x1

v1

)
dx2 = −1

τ
q(v2, u) = −1

τ

∫
ΓN

(∂v2

∂x1

u− ∂u

∂x1

v2

)
dx2.

Since u decays exponentially,∫
Γ

(∂v1

∂x1

u− ∂u

∂x1

v1

)
dx2 = lim

N→+∞

∫
ΓN

(∂v1

∂x1

u− ∂u

∂x1

v1

)
dx2 = 0,∫

Γ

(∂v1

∂x1

u+
∂u

∂x1

v1

)
dx2 = −1

τ
lim

N→+∞

∫
ΓN

(∂v2

∂x1

u− ∂u

∂x1

v2

)
dx2 = 0.

By adding those two identities together, we conclude that

∫
Γ

∂v1

∂x1

udx2 =

∫
Γ

∂u

∂x1

v1dx2 = 0.

Following the same argument,

∫
Γ

∂v2

∂x1

udx2 =

∫
Γ

∂u

∂x1

v2dx2 = 0.
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We next present some useful properties of the Green’s function G(x, y;λ∗).

Lemma 2.4. For x, y ∈ Ω and x 6= y, the Green function in (2.2) satisfies

G(x, y;λ∗) = G(y, x;λ∗). (2.7)

On the other hand, when y ∈ Γ := {0} × (0, 1
2
), there holds

G((x1, x2), y;λ∗) = G((−x1, x2), y;λ∗), ∀(x1, x2) ∈ Ω. (2.8)

Proof. We only prove (2.7) and the proof of (2.8) follows similarly. For x 6= y, define u(z) :=
G(z, x;λ∗) and w(z) := G(z, y;λ∗). Let Ω−N,N := Ω

⋂(
(−N,N)×(0, 1

2
)
)

where N is a positive
integer. Then x, y ∈ ΩN for sufficiently large N . An integration by part yields

w(x)− u(y) =

∫
Ω−N,N

(∆ + λ∗)u(z)w(z)− (∆ + λ∗)w(z)u(z)dz

=

∫
ΓN

(
∂u

∂z1

w − ∂w

∂z1

u

)
dz2 −

∫
Γ−N

(
∂u

∂z1

w − ∂w

∂z1

u

)
dz2.

(2.9)

By (2.3) and Lemma 2.3, as N → +∞, we have

lim
N→+∞

∫
ΓN

∂u

∂z1

w− ∂w
∂z1

udz2 = − 1

α2
∗

(
v1(x) · v1(y)

∫
Γ

∂v1

∂z1

v1dz2 − v1(x) · v1(y)

∫
Γ

∂v1

∂z1

v1dz2

)
= 0.

Similarly,

lim
N→+∞

∫
Γ−N

∂u

∂z1

w− ∂w
∂z1

udz2 = − 1

α2
∗

(
v2(x) · v2(y)

∫
Γ

∂v2

∂z1

v2dz2 − v2(x) · v2(y)

∫
Γ

∂v2

∂z1

v2dz2

)
= 0.

Thus w(x) = u(y), which implies G(y, x;λ∗) = G(x, y;λ∗) from definition of w and u.

Finally, as an application of Green’s function, we present a representation formula for the
solution to the Helmholtz equation in the semi-infinite structure Ω+ := {x = (x1, x2) : x ∈
Ω, x1 > 0}. Denote

V+(λ) :=
{
u ∈ H1

loc(Ω
+) : (∆ + λ)u(x) = 0 in Ω+,

∂u

∂x2

∣∣
Γ−

⋃
Γ+

= 0, u
∣∣
∂Dn

= 0, n ≥ 1
}
.

Proposition 2.5. If u ∈ V+(λ∗) satisfies the right-going condition such that

u(x) = c1v1(x) + u+
0 (x) for some c1 ∈ C and u+

0 (x) decays exponentially as x1 → +∞,

then

u(x) = 2

∫
Γ

G(x, y;λ∗)
∂u

∂x1

(0+, y2)dy2, x ∈ Ω+. (2.10)

Proof. Suppose u ∈ V+(λ∗). Define the following even extension of u:

ũ(x1, x2) =

{
u(x1, x2), x1 ≥ 0,

u(−x1, x2), x1 < 0.
(2.11)
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Let Ωx,y := Ω
⋂

((x, y) × (0, 1
2
)). For y = (y1, y2) ∈ Ω+ and positve integer N , an integration

by parts shows that

ũ(y) =

∫
Ω0,N

(∆x + λ∗)G(x, y;λ∗)ũ(x)− (∆x + λ∗)ũ(x)G(x, y;λ∗)dx

=

∫
ΓN

(
∂

∂x1

G(x, y;λ∗)ũ(x)− ∂

∂x1

ũ(x)G(x, y;λ∗)

)
dx2

−
∫

Γ

(
∂

∂x1

G(x, y;λ∗)ũ(0+, x2)− ∂

∂x1

ũ(0+, x2)G(x, y;λ∗)

)
dx2,

where ũ(0+, x2) = u(x)
∣∣
Γ
. By the right-going condition of u(·), we have

lim
N→+∞

∫
ΓN

( ∂

∂x1

G(x, y;λ∗)ũ(x)− ∂

∂x1

ũ(x)G(x, y;λ∗)
)
dx2

= −ic1

α∗
v1(y) lim

N→+∞

∫
ΓN

(
v1(x)

∂

∂x1

v1(x)− v1(x)
∂

∂x1

v1(x)

)
dx2 = 0.

Therefore,

ũ(y) = −
∫

Γ

(
∂

∂x1

G(x, y;λ∗)ũ(0+, x2)− ∂

∂x1

ũ(0+, x2)G(x, y;λ∗)

)
dx2

= −
∫

Γ

(
∂

∂x1

G(x, y;λ∗)u(0+, x2)− ∂

∂x1

u(0+, x2)G(x, y;λ∗)

)
dx2.

(2.12)

Similarly, an integration by parts in Ω−N,0 yields

0 =

∫
Ω−N,0

(∆x + λ∗)G(x, y;λ∗)ũ(x)− (∆x + λ∗)ũ(x)G(x, y;λ∗)dx

= −
∫

Γ−N

(
∂

∂x1

G(x, y;λ∗)ũ(x)− ∂

∂x1

ũ(x)G(x, y;λ∗)

)
dx2

+

∫
Γ

(
∂

∂x1

G(x, y;λ∗)ũ(0−, x2)− ∂

∂x1

ũ(0−, x2)G(x, y;λ∗)

)
dx2

By letting N →∞, we have

lim
N→+∞

∫
Γ−N

( ∂

∂x1

G(x, y;λ∗)ũ(x)− ∂

∂x1

ũ(x)G(x, y;λ∗)
)
dx2

= −ic1

α∗
v2(y) lim

N→+∞

∫
Γ−N

(
v1(−x1, x2)

∂v2

∂x1

(x) + v2(x)
∂v1

∂x1

(−x1, x2)

)
dx2

= − ic1

τα∗
v2(y) lim

N→+∞

∫
Γ−N

(
v2(x)

∂v2

∂x1

(x)− v2(x)
∂v2

∂x1

(x)

)
dx2 = 0,

where (2.4) is applied in the first equality, and Lemma 2.2 is used in the second one. Thus,
we obtain

0 =

∫
Γ

(
∂

∂x1

G(x, y;λ∗)ũ(0−, x2)− ∂

∂x1

ũ(0−, x2)G(x, y;λ∗)

)
dx2.

Note that ũ(0−, x2) = u(0+, x2) and ∂
∂x1
ũ(0−, x2) = − ∂

∂x1
u(0+, x2). Thus,

0 =

∫
Γ

(
∂

∂x1

G(x, y;λ∗)u(0+, x2) +
∂

∂x1

u(0+, x2)G(x, y;λ∗)

)
dx2.

The above equality, combined with (2.12), gives the representation formula (2.10).
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2.3 The Green’s functions for the perturbed periodic structures

We introduce the Green’s functions for the perturbed periodic structures in Figure 2(a)(b).
Let Gδ(x, y;λ) be the Green’s function associated with the perturbed waveguide Ωδ in Figure
2(b) that is obtained by using the limiting absorption principle (see also Section 2.2). More
precisely, Gδ(x, y;λ) is the unique physical solution that satisfies the following equations:

(∆x + λ)Gδ(x, y;λ) = δ̃(x− y), x, y ∈ Ωδ,

Gδ(x, y;λ) = 0, x ∈ ∪n∈Z∗∂Dn,δ,

∂

∂x2

Gδ(x, y;λ) = 0, x ∈ Γ−
⋃

Γ+.

(2.13)

Here again δ̃(·) denotes the Dirac delta function. We are particularly interested in the Green’s
function when λ lies in a spectral band gap of the periodic structure. For such λ, there is no
propagating Bloch mode, thus Gδ(x, y;λ) decays exponentially at infinity. This gives the so-
called radiation condition for Gδ(x, y;λ). Similarly, we define the Green’s function G−δ(x, y;λ)
for the periodic structure Figure 2(a).

We denote {(λj,δ(p), uj,δ(x; p))}j≥1 the Bloch eigenpairs of the perturbed periodic structure
Ωδ for each p ∈ B = [0, 2π]. Then G±δ attains the following spectral representation for λ in
band gaps:

G±δ(x, y;λ) =
1

2π

∫ 2π

0

+∞∑
n=1

un,±δ(x; p)un,±δ(y; p)

λ− λn,±δ(p)
dp. (2.14)

Finally, we present two Parseval-type identities using the Bloch eigenpairs (λj,δ(p), uj,δ(x; p)):

Lemma 2.6. For u ∈ H1(Ωδ) given by u(x) =

∫ 2π

0

∞∑
n=1

an,δ(u; p)un,δ(x; p)dp,

‖u‖2
L2(Ωδ)

=

∫ 2π

0

∞∑
n=1

|an,δ(u; p)|2dp, (2.15)

‖u‖2
H1(Ωδ)

=

∫ 2π

0

∞∑
n=1

(1 + λn,δ(p))|an,δ(u; p)|2dp. (2.16)

Proof. Let Cδ := Y ∩ Ω = (0, 1) × (0, 1
2
)\D1 ∪D2. Then (2.15) can be derived from the

Parseval identity of the Floquet transform [25]. On the other hand, (2.16) follows from the
identity∫

Cδ

∇un,δ(x; p) · ∇um,δ(x; p)dx = λn,δ(p)

∫
Cδ

un,δ(x; p)um,δ(x; p)dx = δnmλn,δ(p).

2.4 Gohberg and Sigal theory

We briefly introduce the Gohberg and Sigal theory, especially the analytic version of the gen-
eralized Rouché theorem, which is used to solve the characteristic values of integral operators.
We refer to Chapter 1.5 of [5] for a thorough exposition of the topic.
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Let X and Y be two Banach spaces. An operator A ∈ B(X, Y ) is said to be Fredholm
if the subspace KerA is finite-dimensional and the subspace RanA is closed in Y and of finite
codimension. The index of a Fredholm operator A is defined as

ind(A) := dim KerA− codim RanA.

The following propositions show the stability of the index.

Proposition 2.7. If A : X → Y is a Fredholm operator and K : X → Y is compact, then
A+K is a Fredholm operator and ind(A+K) = ind(A).

Proposition 2.8. If A : X → Y is a Fredholm operator, then there exists ε > 0 such that for
B ∈ B(X, Y ) and ‖B‖ < ε, A+B is a Fredholm operator and

ind(A+B) = ind(A).

Let U(z0) be the set of all operator-valued functions with values in B(X, Y ), which are
holomorphic in some neighborhood of z0, except possibly at z0. Then the point z0 is called a
characteristic value of A(z) ∈ U(z0) if there exists a vector-valued function φ(z) with values
in X such that

1. φ(z) is holomorphic at z0 and φ(z0) 6= 0,

2. A(z)φ(z) is holomorphic at z0 and vanishes at this point.

Here φ(z) is called a root function of A(z) associated with the characteristic value z0, and
φ(z0) is called an eigenvector. By this definition, there exists an integer m(φ) ≥ 1 and a
vector-valued function ψ(z) ∈ Y , holomorphic at z0, such that

A(z)φ(z) = (z − z0)m(φ)ψ(z), ψ(z0) 6= 0.

The number m(φ) is called the multiplicity of the root function φ(z). For φ0 ∈ KerA(z0),
the rank of φ0, which is denoted by rank(φ0), is defined as the maximum of the multiplicities
of all root functions φ(z) with φ(z0) = φ0.

Suppose that n = dim KerA(z0) < +∞ and the ranks of all vectors in KerA(z0) are finite.
A system of eigenvectors φj0 (j = 1, 2, · · · , n) is called a canonical system of eigenvectors
of A(z) associated to z0 if for j = 1, 2, · · · , n, rank(φj0) is the maximum of the ranks of all eigen-
vectors in the direct complement in KerA(z0) of the linear span of the vectors φ1

0, · · · , φn−1
0 .

We call

N(A(z0)) :=
n∑
j=1

rank(φj0)

the null multiplicity of the characteristic value z0 of A(z). Suppose that A−1(z) exists and
is holomorphic in some neighborhood of z0, except possibly at z0. Then the number

M(A(z0)) := N(A(z0))−N(A−1(z0))

is called the multiplicity of z0.
Now, let V be a simply connected bounded domain with a rectifiable boundary ∂V . For

an analytic operator-valued (or meromorphic operator-valued as in [5]) function A(z), it is
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normal with respect to ∂V if 1)A(z) is Fredholm for all z ∈ V ; 2)A−1(z) exists in V ,
except for a finite number of points; 3)A(z) is continuous for z ∈ ∂V . For such a function
A(z), the full multiplicityM(A(z); ∂V ) counts the number of characteristic values of A(z) in
V (computed with their multiplicities). Namely,

M(A(z); ∂V ) :=
σ∑
i=1

M(A(zi)),

where zi (i = 1, 2, · · · , σ) are all characteristic values of A(z) lying in V . The generalized
Rouché theorem is stated as follows:

Theorem 2.9 (Generalized Rouché theorem). Let A(z) and B(z) be two analytic operator-
valued functions that are normal with respect to ∂V , and B(z) is continuous on ∂V satisfying
the condition

‖A−1(z)B(z)‖B(X,Y ) < 1, z ∈ ∂V.
Then A(z) +B(z) is also normal with respect to ∂V and

M(A(z); ∂V ) =M(A(z) +B(z); ∂V ).

3 Band-gap opening at the Dirac point (p∗, λ∗)

In this section, we investigate the band-gap opening at the Dirac point (p∗, λ∗) by perturbing
the periodic waveguide in Figure 1. The perturbed structure in Figure 2(b) is obtained by
shifting the obstacle Dn in Figure 1 to Dn,δ for each n ∈ Z∗, with the mass centers given by

zn,δ =

{
zn − δe1, n is odd and positive, or, n is even and negative,

zn + δe1, n is even and positive, or, n is odd and negative.

Denote the perturbed domain by Ωδ := R× (0, 1)\
⋃
n∈Z∗ Dn,δ. The associated partial differ-

ential operator is

Lδ : H1
b (Ωδ) ⊂ L2(Ωδ)→ L2(Ωδ), φ 7→ −∆φ,

H1
b (Ωδ; ∆) :=

{
u ∈ H1(Ωδ) : ∆u ∈ L2(Ω),

∂

∂x2

u|Γ−⋃
Γ+ = 0, u|∂Dn,δ = 0, n ∈ Z∗

}
.

(3.1)

The band structure of the operator Lδ can be obtained by solving the following eigenvalue
problem for each p ∈ [0, 2π]:

(Lδ − λ)u(x; p, λ) = 0, x ∈ Ωδ,

u(x; p, λ) = 0, x ∈ ∪n∈Z∗∂Dn,δ,

∂

∂x2

u(x; p, λ) = 0, x ∈ Γ−
⋃

Γ+,

u(x+ e1) = eipu(x),
∂u

∂x1

(x+ e1) = eip
∂u

∂x1

(x).

(3.2)

Similarly, by replacing δ above with −δ, one can obtain the eigenvalue problem for the per-
turbed structure shown in Figure 2(a). The corresponding partial differential operator is
denoted by L−δ.
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We aim to prove that a common band gap exists for σ(Lδ) and σ(L−δ) near the Dirac
point (p∗, λ∗) of the operator L. Furthermore, we derive the asymptotic expansions of the
dispersion relations and the corresponding Floquet-Bloch eigenmodes near the Dirac point.
In particular, we show that the eigenspaces at the band edges are swapped for Lδ and L−δ.

3.1 Boundary-integral equation formulations for eigenvalue prob-
lems

We present a boundary-integral equation formulation for the eigenvalue problem (3.2). We
begin with the case when δ = 0, which corresponds to the unperturbed periodic structure.
For each p ∈ [0, 2π], let Ge(x, y; p, λ) be the quasi-periodic Green’s function for the empty
waveguide that solves the following equations:

(∆x + λ)Ge(x, y; p, λ) = δ̃(x− y), x, y ∈ R× (0,
1

2
),

∂

∂x2

Ge(x, y; p, λ) = 0, x ∈ Γ−
⋃

Γ+,

Ge(x+ e1, y; p, λ) = eipGe(x, y; p, λ) for each y,

where δ̃(·) is the Dirac delta function. Ge(x, y; p, λ) can be expressed explicitly as a Fourier
series as follows:

Ge(x, y; p, λ) =
∑
m∈Z

∑
n∈Z

eipm(x1−y1)

λ− p2
m − (2nπ)2

(
ei2nπ(x2−y2) + ei2nπ(x2+y2)

)
=
∑
m∈Z

eipm(x1−y1)√
p2
m − λ

(
e−
√
p2m−λ − e

√
p2m−λ

) (e√p2m−λ(1−2|x2−y2|)

+e−
√
p2m−λ(1−2|x2−y2|) + e

√
p2m−λ(1−2(x2+y2)) + e−

√
p2m−λ(1−2(x2+y2))

)
,

(3.3)

where pm = p+ 2mπ. We can also expand Ge(x, y; p, λ) into the following Floquet series:

Ge(x, y; p, λ) =
∑
n≥1

uen(x; p)uen(y; p)

λ− λen(p)
, (3.4)

where {λen(p), uen(x; p)}n≥1 are the Bloch eigenpairs in the empty waveguide.
Using the Green’s function Ge, we may express the eigenfunction for (3.2) as

u(x; p, λ) =

∫
∂D

Ge(x, y + z1; p, λ)ϕ1(y)dσ(y) +

∫
∂D

Ge(x, y + z2; p, λ)ϕ2(y)dσ(y), (3.5)

where ϕi ∈ H−
1
2 (∂D) (i = 1, 2) and dσ(y) is area element for the boundary surface ∂D. Here

and after, H−
1
2 (∂D) and H

1
2 (∂D) are the standard Sobolev spaces defined on the closed curve

∂D. By imposing the Dirichlet boundary conditions on the obstacle boundaries ∂D1 and ∂D2,
we obtain the following homogeneous system:
∫
∂D

Ge(x+ z1, y + z1; p, λ)ϕ1(y)dσ(y) +

∫
∂D

Ge(x+ z1, y + z2; p, λ)ϕ2(y)dσ(y) = 0, x ∈ ∂D,∫
∂D

Ge(x+ z2, y + z1; p, λ)ϕ1(y)dσ(y) +

∫
∂D

Ge(x+ z2, y + z2; p, λ)ϕ2(y)dσ(y) = 0, x ∈ ∂D.
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Note that Ge(x+ te1, y + te1; p, λ) = Ge(x, y; p, λ) for t ∈ R and that z2 − z1 = 1
2
e1. The

above system is equivalent to

T (p, λ)ϕ :=

(
T11(p, λ) T12(p, λ)
T21(p, λ) T22(p, λ)

)
ϕ = 0, (3.6)

where ϕ = (ϕ1 ϕ2)T and the operators Tij(p, λ)’s are defined by

T11(p, λ) = T22(p, λ) : φ(x) 7→
∫
∂D

Ge(x, y; p, λ)φ(y)dσ(y),

T12(p, λ) : φ(x) 7→
∫
∂D

Ge(x, y +
1

2
e1; p, λ)φ(y)dσ(y),

T21(p, λ) : φ(x) 7→
∫
∂D

Ge(x+
1

2
e1, y; p, λ)φ(y)dσ(y).

Therefore, the spectrum of the operator L(p) can be obtained from the characteristic values
of T (p, λ). In addition, from the solution of (3.6), one can recover the corresponding Bloch
eigenfunction by the layer potential (3.5). We remark that using the standard layer potential

theory, one can show that Tij(p, λ) ∈ B
(
H−

1
2 (∂D), H

1
2 (∂D)

)
for 1 ≤ i, j ≤ 2.

For δ 6= 0, following a similar procedure, the eigenvalue problem (3.2) can be formulated
using the following boundary integral equations:

Tδ(p, λ)ϕδ :=

(
T11(p, λ) T12,δ(p, λ)
T21,δ(p, λ) T22(p, λ)

)
ϕδ = 0, (3.7)

where the operators T12,δ(p, λ) and T12,δ(p, λ) are defined by
T12,δ : φ(x) 7→

∫
∂D

Ge(x, y + (
1

2
+ 2δ)e1; p, λ)φ(y)dσ(y),

T21,δ : φ(x) 7→
∫
∂D

Ge(x+ (
1

2
− 2δ)e1, y; p, λ)φ(y)dσ(y).

Lemma 3.1. The operator T (p∗, λ∗) : H−
1
2 (∂D) × H−

1
2 (∂D) → H

1
2 (∂D) × H

1
2 (∂D) is a

Fredholm operator with zero index. Moreover, KerT (p∗, λ∗) = span{ϕ1,ϕ2}, where ϕ1 and
ϕ2 are defined in Corollary 1.8.

Proof. In the following, we prove that T (p∗, λ∗) can be decomposed as the sum of an operator
with a bounded inverse and a compact operator; hence it is a Fredholm operator with zero
index.

To construct such a decomposition, we first identify each ϕ = (ϕ1, ϕ2) ∈ H−
1
2 (∂D) ×

H−
1
2 (∂D) with ϕ̃ ∈ H− 1

2 (∂D1 ∪ ∂D2) by

ϕ̃(x)|∂D1 = ϕ1(x− z1), ϕ̃(x)|∂D2 = ϕ2(x− z2).
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Observe that for ψ,ϕ ∈ H− 1
2 (∂D)×H− 1

2 (∂D),

〈ψ,T (p∗, λ∗)ϕ〉

=

∫
∂D×∂D

(
Ge(x, y; p∗, λ∗)ϕ1(y) +Ge(x, y +

1

2
e1; p∗, λ∗)ϕ2(y)

)
ψ1(x)dσ(y)dσ(x)

+

∫
∂D×∂D

(
Ge(x+

1

2
e1, y; p∗, λ∗)ϕ1(y) +Ge(x+

1

2
e1, y +

1

2
e1; p∗, λ∗)ϕ2(y)

)
ψ2(x)dσ(y)dσ(x)

=

∫
∂D×∂D

(
Ge(x+ z1, y + z1; p∗, λ∗)ϕ1(y) +Ge(x+ z1, y + z2; p∗, λ∗)ϕ2(y)

)
ψ1(x)dσ(y)dσ(x)

+

∫
∂D×∂D

(
Ge(x+ z2, y + z1; p∗, λ∗)ϕ1(y) +Ge(x+ z2, y + z2; p∗, λ∗)ϕ2(y)

)
ψ2(x)dσ(y)dσ(x)

=

∫
∂D1

∫
∂D1

Ge(x, y; p∗, λ∗)ϕ̃(y)ψ̃(x)dσ(y)dσ(x) +

∫
∂D1

∫
∂D2

Ge(x, y; p∗, λ∗)ϕ̃(y)ψ̃(x)dσ(y)dσ(x)

+

∫
∂D2

∫
∂D1

Ge(x, y; p∗, λ∗)ϕ̃(y)ψ̃(x)dσ(y)dσ(x) +

∫
∂D2

∫
∂D2

Ge(x, y; p∗, λ∗)ϕ̃(y)ψ̃(x)dσ(y)dσ(x)

=

∫
∂D1∪∂D2

∫
∂D1∪∂D2

Ge(x, y; p∗, λ∗)ϕ̃(y)ψ̃(x)dσ(y)dσ(x).

Denote cn(ϕ̃) =
∫
∂D1∪∂D2

˜ϕ(x)un(x; p∗)dσ(x). By (3.4), we have

〈ψ, T (p∗, λ∗)ϕ〉 = a(ϕ̃, ψ̃) :=
∑
n≥1

cn(ϕ̃) · cn(ψ̃)

λ∗ − λen(p∗)
.

We further introduce the following two sesquilinear forms

a(0)(ϕ̃, ψ̃) :=
∑

{n:λen(p∗)>λ∗}

cn(ϕ̃) · cn(ψ̃)

λ∗ − λen(p∗)
−

∑
{n:λen(p∗)<λ∗}

cn(ϕ̃) · cn(ψ̃),

a(1)(ϕ̃, ψ̃) :=
∑

{n:λen(p∗)<λ∗}

cn(ϕ̃) · cn(ψ̃)

λ∗ − λen(p∗)
+

∑
{n:λen(p∗)<λ∗}

cn(ϕ̃) · cn(ψ̃),

(3.8)

and their associated operators T̃ (0), T̃ (1) ∈ B(H−
1
2 (∂D1 ∪ ∂D2), H

1
2 (∂D1 ∪ ∂D2)). Then we

have a(ϕ̃, ψ̃) = a(0)(ϕ̃, ψ̃) + a(1)(ϕ̃, ψ̃); thus, it is sufficient to show that T̃ (0) is invertible and
T̃ (1) is compact to conclude that T (p∗, λ∗) is a Fredholm operator with zero index. Since
{n : λen(p∗) < λ∗} is a finite set, it is clear that T̃ (1) has finite rank and thus is compact. So we
only need to prove the invertibility of T̃ (0). To this end, we shall show that the sesquilinear
form a(0) is coercive and symmetric in the following two steps.

Step 1. We prove the following inequality

|a(0)(ϕ̃, ϕ̃)| & ‖ϕ̃‖2, (3.9)

which ensures that T̃ (0) is injectivity and that its range space is closed. First, (3.8) shows that

|a(0)(ϕ̃, ϕ̃)| =
∑

{n:λen(p∗)>λ∗}

|cn(ϕ̃)|2

|λ∗ − λen(p∗)|
+

∑
{n:λen(p∗)<λ∗}

|cn(ϕ̃)|2 &
∑
n≥1

|cn(ϕ̃)|2

|λ∗ − λen(p∗)|
. (3.10)
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Next, let Tr : H1
p∗(Y ) → H

1
2 (∂D1 ∪ ∂D2) be the trace operator (H1

p∗(Y ) consists of the
functions in H1(Y ) that satisfy the p∗−quasi-periodic boundary condition in x1−direction)

and E : H
1
2 (∂D1 ∪ ∂D2) → H1

p∗(Y ) be the Sobolev extension operator such that Tr ◦ E =
id|

H
1
2 (∂D1∪∂D2)

. Since {uen(x; p∗)} forms an orthogonal basis of H1
p∗(Y ), we can expand Eφ

for any φ ∈ H 1
2 (∂D1 ∪ ∂D2) as (Eφ)(x) ≡

∑
n≥1 anu

e
n(x; p∗). Similar to (2.16), the following

identity holds:

‖Eφ‖2
H1(Y ) =

∑
n≥1

(1 + λen(p∗))|an|2.

As a result,∣∣∣〈ϕ̃, φ〉
H−

1
2 (∂D1∪∂D2)×H

1
2 (∂D1∪∂D2)

∣∣∣ =
∣∣∣〈ϕ̃,Tr(Eφ)〉

∣∣∣ =
∣∣∣∑
n≥1

an · cn(ϕ̃)
∣∣∣

≤ (
∑
n≥1

|λ∗ − λen(p∗)||an|2)
1
2 · (
∑
n≥1

|cn(ϕ̃)|2

|λ∗ − λen(p∗)|
)
1
2

Since limn→+∞ λ
e
n(p∗) = +∞,

∑
n≥1 |λ∗−λen(p∗)||an|2 .

∑
n≥1(1 +λen(p∗))|an|2. Thus we have∣∣∣〈ϕ̃, φ〉

H−
1
2 (∂D1∪∂D2)×H

1
2 (∂D1∪∂D2)

∣∣∣ . (
∑
n≥1

(1 + λen(p∗))|an|2)
1
2 · (
∑
n≥1

|cn(ϕ̃)|2

|λ∗ − λen(p∗)|
)
1
2

= ‖Eφ‖H1(Y )

(∑
n≥1

|cn(ϕ̃)|2

|λ∗ − λen(p∗)|

) 1
2

. ‖φ‖
H

1
2 (∂D1∪∂D2)

(∑
n≥1

|cn(ϕ̃)|2

|λ∗ − λen(p∗)|

) 1
2

.

Therefore

‖ϕ̃‖ ≤ (
∑
n≥1

|cn(ϕ̃)|2

|λ∗ − λen(p∗)|
)
1
2 . (3.11)

Then the desired estimate (3.9) follows directly from (3.10) and (3.11).

Step 2. We prove that a(0)(·, ·) is symmetric. Then the injectivity, which is proved in Step
1, implies that RanT (0) is dense. In fact, from the definition of a(0)(·, ·) in (3.8), it follows
that

a(0)(ϕ̃, ψ̃) :=
∑

{n:λen(p∗)>λ∗}

cn(ϕ̃) · cn(ψ̃)

λ∗ − λen(p∗)
−

∑
{n:λen(p∗)<λ∗}

cn(ϕ̃) · cn(ψ̃)

=
∑

{n:λen(p∗)>λ∗}

cn(ϕ̃) · cn(ψ̃)

λ∗ − λen(p∗)
−

∑
{n:λen(p∗)<λ∗}

cn(ϕ̃) · cn(ψ̃)

= a(0)(ψ̃, ϕ̃).

(3.12)

We conclude from Step 1 and 2 that T̃ (0) is bijective. By the open mapping theorem, T̃ (0)

is also invertible with a bounded inverse. Consequently, T (p∗, λ∗) is a Fredholm operator with
zero index.

Finally, it is clear that any ϕ ∈ KerT (p∗, λ∗) corresponds to the Neumann trace of a Bloch
eigenfunction on ∂D1 ∪ ∂D2 at the Dirac point (p∗, λ∗). Since the eigenspace at the Dirac
point is 2-dimensional as stated in Proposition 1.5, Corollary 1.8 shows that KerT (p∗, λ∗) =
span{ϕ1,ϕ2}.
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3.2 Band-gap opening and the asymptotic expansions

We investigate band-gap opening at the Dirac point (p∗, λ∗) of L for the perturbed periodic
structures using the integral equation formulation presented in the previous subsection. First
note that the quasi-periodic Green function Ge(x, y; p, λ) in (3.3) is analytic with respect to
λ for λ near λ∗ (by Assumption 1.10), the following property holds:

Lemma 3.2. For |p − p∗|, |λ − λ∗|, |δ| � 1, Tδ(p, λ) is analytic in p, λ. Moreover, there

exist Tp, Tλ, S ∈ B
(
H−

1
2 (∂D)×H− 1

2 (∂D), H
1
2 (∂D)×H 1

2 (∂D)
)

such that when |p− p∗|, |λ−
λ∗|, |δ| � 1, there holds

Tδ(p, λ) = T (p∗, λ∗) + (p− p∗)Tp + (λ− λ∗)Tλ + δS +O((p− p∗)2, (λ− λ∗)2, δ2). (3.13)

Properties of the operators Tp, Tλ, and S above are given in Proposition 3.3 and 3.5 below,

wherein 〈·, ·〉 denote the dual pair between H−
1
2 (∂D)×H− 1

2 (∂D) and H
1
2 (∂D)×H 1

2 (∂D).

Proposition 3.3. Let ϕ1,ϕ2 be the boundary potentials at the Dirac point (p∗, λ∗) defined in
(1.4)-(1.5). Then there exist real numbers γ∗, θ∗ such that for i, j = 1, 2,

〈ϕj , Tλϕi〉 = γ∗δij,

〈ϕj , Tpϕi〉 =
√
−1θ∗(1− δij)(−1)i−1.

(3.14)

Proposition 3.4. Let θ∗ and γ∗ be defined in (3.14), and α∗ be defined in Assumption 1.1,
we have

α∗ =

∣∣∣∣θ∗γ∗
∣∣∣∣ .

Proposition 3.5. Let ϕ1 and ϕ2 be the same as in Proposition 3.3. Then there exist t∗ ∈ R
such that

〈ϕj , Sϕi〉 = t∗(−1)i−1δij. (3.15)

The proofs of Proposition 3.3 and 3.5 contain technical calculations and are given in Ap-
pendix B and C, respectively. On the other hand, Proposition 3.4 is a consequence of Theorem
3.6 below and will be proved afterward. Now we are ready to state the main result of this sec-
tion on the asymptotics of the perturbed dispersion relations and eigenmodes near the Dirac
point.

Theorem 3.6 (Dispersion relation and eigenmodes near the Dirac point). Under Assumption
1.1, 1.7, 1.10, and the assumption that t∗ defined in (3.15) is nonzero, there exists δ0 > 0
such that for all |δ| < δ0 and quasi-momentum p with |p− p∗| � 1, there are two branches of
dispersion curves (p, λ2,δ(p)) and (p, λ1,δ(p)) which are the characteristic values of (3.7). In
addition, they admit the following expansions:

λ2,δ(p) = λ∗ +
1

|γ∗|
√
δ2t2∗ + θ2

∗(p− p∗)2 (1 +O(p− p∗, δ)) ,

λ1,δ(p) = λ∗ −
1

|γ∗|
√
δ2t2∗ + θ2

∗(p− p∗)2 (1 +O(p− p∗, δ)) .
(3.16)
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Moreover, when δ > 0 and assume further that γ∗, θ∗, t∗ > 0, the Floquet-Bloch eigenmodes
defined in (3.2) admit the asymptotic expansion for |p− p∗| � 1:

u2,δ(x; p) := uδ(x; p, λ2,δ(p)) =

√
−1θ∗(p− p∗)

δt∗ +
√
δ2t2∗ + θ2

∗(p− p∗)2
φ1(x) + φ2(x) +O(p− p∗, δ),

u1,δ(x; p) := uδ(x; p, λ1,δ(p)) = φ1(x) +

√
−1θ∗(p− p∗)

δt∗ +
√
δ2t2∗ + θ2

∗(p− p∗)2
φ2(x) +O(p− p∗, δ),

(3.17)
where φ1 and φ2 are the eigenmodes at the Dirac point (π, λ∗) of L. Similarly,

λ2,−δ(p) = λ∗ +
1

|γ∗|
√
δ2t2∗ + θ2

∗(p− p∗)2 (1 +O(p− p∗, δ)) ,

λ1,−δ(p) = λ∗ −
1

|γ∗|
√
δ2t2∗ + θ2

∗(p− p∗)2 (1 +O(p− p∗, δ)) ,
(3.18)

and

u2,−δ(x; p) := u−δ(x; p, λ2,−δ(p)) = φ1(x)−
√
−1θ∗(p− p∗)

δt∗ +
√
δ2t2∗ + θ2

∗(p− p∗)2
φ2(x) +O(p− p∗, δ),

u1,−δ(x; p) := u−δ(x; p, λ1,−δ(p)) = −
√
−1θ∗(p− p∗)

δt∗ +
√
δ2t2∗ + θ2

∗(p− p∗)2
φ1(x) + φ2(x) +O(p− p∗, δ).

(3.19)

Remark 3.7. In the above theorem, the assumption that γ∗, θ∗ > 0 is made for the ease of
the presentation. Without it, similar asymptotic expansions of Floquet-Bloch eigenvalues and
eigenmodes, see (3.16)-(3.19), can still be derived using the same arguments.

Remark 3.8. It can be observed from (3.16) that the perturbed dispersion curves are locally
parabolic when t∗ 6= 0. In addition, Theorem 3.6 implies that

lim
δ→0+

λ2,δ(p∗) = lim
δ→0+

λ1,δ(p∗) = lim
δ→0+

λ2,−δ(p∗) = lim
δ→0+

λ1,−δ(p∗) = λ∗,

lim
δ→0+

u2,δ(x, p∗) = lim
δ→0+

u1,−δ(x, p∗) = φ2(x),

lim
δ→0+

u1,δ(x, p∗) = lim
δ→0+

u2,−δ(x, p∗) = φ1(x).

In other words, when the perturbation is introduced, the degeneracy at the Dirac point is lifted;
See Figure 4 for such an illustration. Very importantly, for the two perturbations with δ > 0
and δ < 0, although the eigenvalues near the Dirac point are the same, the corresponding
eigenspaces are swapped. This demonstrates the topological phase transition of the periodic
structure at the Dirac point when δ = 0.

The following corollary states the existence of the common band gap for σ(Lδ) and σ(L−δ):

Corollary 3.9 (The common band gap of σ(Lδ) and σ(L−δ)). Let δ > 0 and 0 < c < 1 be
a constant. We follow all the notations and assumptions in Theorem 3.6 and define the real
interval

Iδ = (E1,δ, E2,δ) := (λ∗ − cδ|β∗|, λ∗ + cδ|β∗|) , (3.20)

where β∗ = t∗
γ∗

. Then there exists δ0 > 0, such that for all 0 < δ < δ0, there holds

Iδ
⋂

σ(Lδ) = Iδ
⋂

σ(L−δ) = ∅.
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Figure 4: Lifting of the degeneracy near the Dirac point.

Proof. We only consider Lδ, and the proof for L−δ is identical. From Theorem 3.6, for any
c ∈ (0, 1), there exists δ0 > 0 such that for all 0 < δ < δ0, the dispersion relations λ1,δ(p) and
λ2,δ(p) satisfy

max
|p−p∗|≤δ

λ1,δ(p) ≤ λ∗ − cδβ∗, min
|p−p∗|≤δ

λ2,δ(p) ≥ λ∗ + cδβ∗.

Thus to show that Iδ is indeed a band gap, it suffices to show that for p ∈ B
⋂
{p : |p− π| ≥ δ},

λ1,δ(p), λ2,δ(p) /∈ Iδ, and λn,δ(p) /∈ Iδ for all n ≥ 3 and p ∈ B. Indeed, this follows from
Assumption 1.1 that only the first and second dispersion curves touch at the Dirac point
(p∗, λ∗), and they are away from λ = λ∗ when p 6= p∗.

3.3 Proof of Proposition 3.4 and Theorem 3.6

Proof of Theorem 3.6. For ease of presentation, we assume that the constants θ∗, γ∗ and t∗
defined in Proposition 3.3 and 3.5 are all positive. Recall Remark 3.7 that such an assumption
is not essential.

We first show that for each p near π and small δ, the operator Tδ(λ; p) := Tδ(p, λ) has two
characteristic values (counted with multiplicity) with |λ−λ∗| � 1. To this end, it is sufficient
to consider p = π, while the cases of p 6= π can be treated similarly.

Note the characteristic values of T (λ; p∗) correspond to the Bloch eigenvalues of the problem
(3.2) at p = p∗ and δ = 0. There is a small neighborhood U(λ∗) of λ = λ∗ in the complex
plane such that λ∗ is the only characteristic value of T (λ; p∗) inside U(λ∗) and its multiplicity
is two. The analyticity of T (λ; p∗) in the variable λ (See Lemma 3.2) implies that T (λ; p∗)
is normal with respect to ∂U(λ∗), so does Tδ(λ; p∗). On the other hand, by Lemma 3.2,
‖T (λ; p∗)

−1(T (λ; p∗)− Tδ(λ; p∗))‖ < 1 for λ ∈ ∂U(λ∗) for δ sufficiently small. Then Theorem
2.9 implies that Tδ(λ; p∗) attains two characteristic values (counted with multiplicity) for
λ ∈ U(λ∗).

Next, we calculate the asymptotic expansion of the characteristic values of Tδ(λ; p) and
their associated eigenvectors by a perturbation argument.

Step 1. We first set up the framework to conduct the perturbation. In the vicinity of the
Dirac point (p∗, λ∗), we write the quasi-momentum as

p = p∗ + p(1), (3.21)
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where |p(1)| � 1. We seek a solution to (3.7) of the form

λ(p∗ + p(1)) = λ∗ + λ(1),

ϕ(x; p∗ + p(1)) = ϕ(0) +ϕ(1), ϕ(0) = aϕ1 + bϕ2 ∈ KerT (p∗, λ∗), ϕ(1) ∈ (KerT (p∗, λ∗))
⊥,

(3.22)
where |λ(1)| � 1, and (KerT (p∗, λ∗))

⊥ is the orthogonal complement of KerT (p∗, λ∗) in

H−
1
2 (∂D)×H− 1

2 (∂D) . Here ϕ1 and ϕ2 are defined in Corollary 1.8.
Substituting (3.13), (3.21) and (3.22) into (3.7), we obtain the following equation for ϕ(1):

T (p∗, λ∗)ϕ
(1) =−

(
p(1)Tp + λ(1)Tλ + δS +O((p(1))2, (λ(1))2, δ2)

)
ϕ(0)

−
(
p(1)Tp + λ(1)Tλ + δS +O((p(1))2, (λ(1))2, δ2)

)
ϕ(1).

(3.23)

Step 2. We solve (3.23) by following a Lyapunov-Schmidt reduction argument. Since

Ran (T (p∗, λ∗)) is closed in H
1
2 (∂D) × H 1

2 (∂D), we introduce the orthogonal projection Q :

H
1
2 (∂D)×H 1

2 (∂D)→ Ran (T (p∗, λ∗)). By applying Q to (3.23), we obtain

T (p∗, λ∗)ϕ
(1) =−Q

(
p(1)Tp + λ(1)Tλ + δS +O((p(1))2, (λ(1))2, δ2)

)
ϕ(0)

−Q
(
p(1)Tp + λ(1)Tλ + δS +O((p(1))2, (λ(1))2, δ2)

)
ϕ(1).

(3.24)

By Lemma 3.1, T−1(p∗, λ∗) ∈ B(Ran (T (p∗, λ∗)), (KerT (p∗, λ∗))
⊥). Then (3.24) can be rewrit-

ten as
(I + A)ϕ(1) = −Aϕ(0), (3.25)

where the map A is defined as

f 7→ Af := T−1(p∗, λ∗)Q
(
p(1)Tp + λ(1)Tλ + δS +O((p(1))2, (λ(1))2, δ2)

)
f .

Thus, for p(1), λ(1), δ sufficiently small, (I + A)−1 exists, which implies that (3.25) is uniquely
solvable:

ϕ(1) = −(I + A)−1Aϕ(0). (3.26)

With (3.22), we may rewrite (3.26) as

ϕ(1) = ϕ(1)(x; p(1), λ(1), δ) = g1(x; p(1), λ(1), δ)a+ g1(x; p(1), λ(1), δ)b,

where the map (p(1), λ(1), δ) 7→ gi(x; p(1), λ(1), δ) (i = 1, 2) is smooth from a neighborhood of
(0, 0, 0) to (KerT (p∗, λ∗))

⊥ with the following estimate:∥∥gi(x; p(1), λ(1), δ)
∥∥ . |p(1)|+ |λ(1)|+ |δ|.

Step 3. We take dual pair with ϕi (i = 1, 2) on both sides of (3.23). From the identity

〈ψ, T (p∗, λ∗)ϕ〉 = 〈ϕ, T (p∗, λ∗)ψ〉 for any ϕ,ψ, we obtain the following equations for (a, b)T :

M(p(1), λ(1), δ)

(
a
b

)
= 0, (3.27)

with

M(p(1), λ(1), δ) :=

(
γ∗λ

(1) + t∗δ −iθ∗p(1)

iθ∗p
(1) γ∗λ

(1) − t∗δ

)
+O((λ(1))2, (p(1))2, δ2). (3.28)
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Note that the higher-order term in (3.28) is smooth in (p(1), λ(1), δ) near (0, 0, 0). Thus (p, λ)
with λ = λ∗ + λ(1)(p(1), δ) is a characteristic value of Tδ(p, λ) defined in (3.7) if and only if
λ(1) = λ(1)(p(1), δ) solves the following equation

F (p(1), λ(1), δ) ≡ detM(p(1), λ(1), δ) = γ2
∗(λ

(1))2 − t2∗δ2 − θ2
∗(p

(1))2 + ρ(p(1), λ(1), δ) = 0, (3.29)

where ρ(p(1), λ(1), δ) is smooth near (0, 0, 0) and satisfies∥∥ρ(p(1), λ(1), δ)
∥∥ = O((λ(1))3, (p(1))3, δ3). (3.30)

Step 4. We solve λ(1) = λ(1)(p(1), δ) from (3.29) for each p(1) and δ. We first note that
± 1
|γ∗|

√
t2∗δ

2 + θ2
∗(p

(1))2 give two branches of solutions if we drop the remainder term ρ. Thus,

we seek a solution to (3.29) in the following form

λ(1)(p(1), δ) =
x

|γ∗|

√
t2∗δ

2 + θ2
∗(p

(1))2 (3.31)

with |x| close to 1. It is clear that x depends on p(1) and δ. By substituting (3.31) into (3.29),
we obtain the following equation of x, with p(1) and δ 6= 0 being viewed as two parameters:

H(x; p(1), δ) :=
1

t2∗δ
2 + θ2

∗(p
(1))2

F (p(1),
x

|γ∗|

√
t2∗δ

2 + θ2
∗(p

(1))2, δ)

= x2 − 1 + ρ1(x; p(1), δ) = 0,

(3.32)

where ρ1(x; p(1), δ) :=
ρ( x
|γ∗|

√
t2∗δ

2+θ2∗(p
(1))2,p(1),δ)

t2∗δ
2+θ2∗(p

(1))2
. Now we consider the upper branch of solution

to (3.32) with |x− 1| � 1. Note that the following estimates hold uniformly in x by (3.30):∣∣ρ1(x; p(1), δ)
∣∣ = O(p(1), δ). (3.33)

We conclude that there exists a unique solution xs(p
(1), δ) to the equation (3.32) with the

estimate xs(p
(1), δ) = 1 + O(p1, δ) for δ, |p(1)| � 1. It follows from (3.31) that there exists a

unique solution λ
(1)
+ (p(1), δ) to the equation (3.29) near 1

|γ∗|

√
t2∗δ

2 + θ2
∗(p

(1))2. Moreover,

λ
(1)
+ (p(1), δ) =

xs(p
(1), δ)

|γ∗|

√
t2∗δ

2 + θ2
∗(p

(1))2) =
1

|γ∗|

√
t2∗δ

2 + θ2
∗(p

(1))2)
(
1 +O(p(1), δ)

)
.

Similarly, we can derive that

λ
(1)
− (p(1), δ) = − 1

|γ∗|

√
t2∗δ

2 + θ2
∗(p

(1))2)
(
1 +O(p(1), δ)

)
.

Note that λ1,δ(p) = λ∗ + λ
(1)
+ (p− p∗, δ), λ2,δ(p) = λ∗ + λ

(1)
− (p− p∗, δ), whence (3.16) follows.

Step 5. Finally, by substituting λ(1)(p) = λi,δ(p)−λ∗ in (3.27) for i = 1, 2 respectively, one
obtains the following solutions accordingly,(

a1

b1

)
=

(
1√

−1θ∗(p−p∗)
δt∗+
√
δ2t2∗+θ

2
∗(p−p∗)2

)
,

(
a2

b2

)
=

( √
−1θ∗(p−p∗)

δt∗+
√
δ2t2∗+θ

2
∗(p−p∗)2

1

)
.

The asymptotic expansions of the eigenmodes ui,δ(·; p) in (3.17) are obtained by substituting
(ai, bi)

T above into (3.22) and then using the layer potentials in (3.5). The proof for (3.18)
and (3.19) follows in a similar manner.
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Proof of Proposition 3.4. The proposition is a consequence of Theorem 3.6. By letting δ = 0 in
the asymptotic formula (3.16), we see that the first two dispersion functions of the unperturbed
structure near p = p∗ admit the following expansions:

λ1(p) = λ∗ + λ
(1)
− (p− p∗) = λ∗ −

∣∣∣θ∗
γ∗

∣∣∣|p− p∗|+O((p− p∗)2),

λ2(p) = λ∗ + λ
(1)
+ (p− p∗) = λ∗ +

∣∣∣θ∗
γ∗

∣∣∣|p− p∗|+O((p− p∗)2).

Therefore, the slope of the dispersion curve at the intersection point (which is the Dirac point)
is | θ∗

γ∗
|. The slope is consistent with the one proposed in Proposition 1.5 and Assumption 1.1.

Thus we have

α∗ =
∣∣∣θ∗
γ∗

∣∣∣.

4 Interface mode for the waveguide with perturbations

In this section, we prove the existence of an interface mode for the waveguide in Figure 2(c),
as stated in Theorem 1.11. In Section 4.1, we reformulate the eigenvalue problem (1.6) as
a boundary integral equation. The asymptotic expansions of the related boundary integral
operators are derived with respect to the perturbation parameter δ in Section 4.2. Finally, we
prove Theorem 1.11 in Section 4.3 by investigating the characteristic values of the associated
boundary integral operator.

4.1 Boundary-integral formulation for the joint system with two
semi-infinite perturbed media

In this subsection, we reformulate the eigenvalue problem (1.6) for the joint system in Figure
2(c) by using a boundary integral equation. The idea is to match the wave fields on both sides
of the waveguide over the interface Γ. To proceed, we first introduce some notations. Recall
that Γ := {0} × (0, 1

2
). Let Γ̃ := Γ ∪ ([0,+∞)× {0}) ∪

(
[0,+∞)× {1

2
}
)

be the boundary of
the semi-infinite waveguide (0,+∞)× (0, 1

2
). We define

H
1
2 (Γ) := {u = U |Γ : U ∈ H

1
2 (Γ̃)},

and
H̃−

1
2 (Γ) := {u = U |Γ : U ∈ H−

1
2 (Γ̃) and supp(U) ⊂ Γ}.

Then H
1
2 (Γ) is the dual space of H̃−

1
2 (Γ) and vice versa. We also denote the left and right

domain in Figure 2(c) by Ω̃−δ := Ω̃δ

⋂(
(−∞, 0)× (0, 1

2
)
)

and Ω̃+
δ := Ω̃δ

⋂(
(0,+∞)× (0, 1

2
)
)
,

respectively.
Suppose that u(x;λ) ∈ L2(Ω̃δ) is a solution of the eigenvalue problem (1.6). We express

u(x;λ) as

u(x;λ) =

{
u+(x), x ∈ Ω̃+

δ ,

u−(x), x ∈ Ω̃−δ ,
(4.1)
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where u+ and u− satisfy respectively the following equations
(∆x + λ)u+(x;λ) = 0, x ∈ Ω̃+

δ ,

u+(x;λ) = 0, x ∈ ∂D̃n,δ (n = 1, 2, · · · ),
∂

∂x2

u+(x;λ) = 0, x ∈ Γ−
⋃

Γ+.


(∆x + λ)u−(x;λ) = 0, x ∈ Ω̃−δ ,

u−(x;λ) = 0, x ∈ ∂D̃n,δ (n = −1,−2, · · · ),
∂

∂x2

u−(x;λ) = 0, x ∈ Γ−
⋃

Γ+.

For λ ∈ Iδ, a common band gap for the left and the right periodic structures near the Dirac
point (p∗, λ∗), it is known that (see [22]) u+ and u− decay exponentially away from the interface
Γ as |x1| → ∞ in Ω̃+

δ and Ω̃−δ respectively. Moreover, the following interface conditions hold:

u(0−, x2;λ) = u(0+, x2;λ), (4.2)

∂u

∂x1

(0−, x2;λ) =
∂u

∂x1

(0+, x2;λ). (4.3)

We have the following representation formulas for u±.

Lemma 4.1. Let λ ∈ Iδ, then

u+(x;λ) = 2

∫
Γ

Gδ(x, y;λ)φ+(y;λ)dσ(y), φ+ =
∂u+

∂x1

∣∣∣
Γ
, (4.4)

u−(x;λ) = −2

∫
Γ

G−δ(x, y;λ)φ−(y;λ)dσ(y), φ− =
∂u−

∂x1

∣∣∣
Γ
, (4.5)

where G±δ(x, y;λ) is the Green’s function defined in (2.13). Moreover, for each φ ∈ H̃− 1
2 (Γ),

the following identity holds:(
∂

∂x1

∫
Γ

Gδ(x, y;λ)φ(y)dσ(y)

)
(0+, x2) =

φ(x2)

2
. (4.6)

Proof. We first prove the representation formula for u+. The formula for u− can be proved
similarly. Let GΓ

δ be Green’s function in the perturbed semi-infinity waveguide with the
Neumann boundary condition on Γ:

(∆x + λ)GΓ
δ (x, y;λ) = δ̃(x− y), x, y ∈ Ωδ,

GΓ
δ (x, y;λ) = 0, x ∈ ∪n≥1∂Dn,δ,

∂

∂x2

GΓ
δ (x, y;λ) = 0, x ∈ Γ−

⋃
Γ+,

∂

∂x1

GΓ
δ (x, y;λ) = 0, x ∈ Γ.

Since Ωδ attains reflection symmetry, for y ∈ Γ, there holds

GΓ
δ (x, y;λ) = lim

y1→0−
Gδ(x, y;λ) + lim

y1→0+
Gδ(x, y;λ) = 2Gδ(x, y;λ),

where Gδ(x, y;λ) is the Green’s function for the perturbed periodic structure defined in (2.13).
Therefore, for λ ∈ Iδ, GΓ

δ (x, y;λ) decays exponentially for |x1| → ∞. Then an integration by
parts yields

u+(x;λ) =

∫
Γ

GΓ
δ (x, y;λ)φ+(y;λ)dσ(y) = 2

∫
Γ

Gδ(x, y;λ)φ+(y;λ)dσ(y), φ+ =
∂u+

∂x1

∣∣∣
Γ
,
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whence the representation formula for u+ follows.

Next, we show (4.6). Let
(

∂
∂x1

∫
Γ
Gδ(x, y;λ)φ(y)dσ(y)

)
(0+, x2) = ψ(x2)

2
. Then (4.4) gives∫

Γ

Gδ(x, y;λ)φ(y)dσ(y) =

∫
Γ

Gδ(x, y;λ)ψ(y)dσ(y) for x ∈ Ω+
δ . (4.7)

Define

u(x) :=

∫
Γ

Gδ(x, y;λ)(φ(y)− ψ(y))dσ(y) for x ∈ Ω+
δ . (4.8)

Then (4.7) implies that u(x) ≡ 0 for x ∈ Ω+
δ . By the reflection symmetry of the Green’s

functionGδ(x, y;λ) (which follows from the same arguments as in Lemma 2.4), u(x) in (4.8) can
be naturally extended to x ∈ Ω−δ . This gives an even extension of u, i.e. u(x1, x2) := u(−x1, x2)
for x1 < 0. Note that the extended u(x) also vanishes in Ωδ. On the other hand, if we rewrite
u as

u(x) =

∫
Γ

Gδ(x, y;λ)(φ(y)− ψ(y))dσ(y) =

∫
Ωδ

Gδ(x, y;λ)(φ̃− ψ̃)(y)dy,

where (φ̃− ψ̃)(y) := φ(y2)δ̃(y1)− ψ(y2)δ̃(y1) (here δ̃ denotes the delta function), then

(∆ + λ)u = φ̃− ψ̃.

However, (∆x + λ)u ≡ 0 for u(x) ≡ 0 when x ∈ Ωδ. Hence we conclude that φ = ψ and
Lemma 4.1 is proved.

By Lemma 4.1 and (4.3), u± can be expressed as

u+(x;λ) = 2

∫
Γ

Gδ(x, y;λ)φ(y;λ)dσ(y), (4.9)

u−(x;λ) = −2

∫
Γ

G−δ(x, y;λ)φ(y;λ)dσ(y), (4.10)

for some φ ∈ H̃− 1
2 (Γ). By substituting (4.9) and (4.10) into the interface condition (4.2), we

obtain

2

∫
Γ

(Gδ((0, x2), (0, y2);λ) +G−δ((0, x2), (0, y2);λ))φ((0, y2);λ)dy2 = 0. (4.11)

Let us introduce the following single-layer boundary integral operators

G±δ(λ) : H̃−
1
2 (Γ)→ H

1
2 (Γ), φ(y) 7→ 2

∫
Γ

G±δ(x, y;λ)φ(y;λ)dy, (4.12)

and set
G̃δ(λ) : H̃−

1
2 (Γ)→ H

1
2 (Γ), G̃δ(λ) = Gδ(λ) + G−δ(λ).

Then (4.11) is equivalent to the following boundary integral equation

G̃δ(λ)φ = 0, for φ ∈ H̃−
1
2 (Γ). (4.13)

In summary, (1.6) attains an interface mode u(x;λ), if and only if λ ∈ Iδ is a characteristic
value of G̃δ(λ).

27



4.2 Properties of boundary integral operators

Here and henceforth, for each λ ∈ Iδ, we parameterize λ as λ := λ∗ + δ · h for h ∈ J :=
(
E1,δ−λ∗

δ
,
E2,δ−λ∗

δ
). The complex neighborhood of J is denoted by J̃ := {h ∈ C : |h| <

|E1,δ−E2,δ

2δ
|}.

We investigate the boundary integral operator G̃δ(λ∗+δ ·h) = Gδ(λ∗+δ ·h)+G−δ(λ∗+δ ·h)
for h ∈ J̃ . The results obtained will pave the way for applying the Gohberg and Sigal theory
to prove Theorem 1.11.

To this end, we first define T±δ(λ∗ + δ · h) : H̃−
1
2 (Γ)→ H

1
2 (Γ) by

T±δ(λ∗ + δ · h) =

∫ 2π

0

∑
n≥3

〈·, un,±δ(y; p)〉
λ∗ + δ · h− λn,±δ(p)

un,±δ(x; p)dp

+

∫
[0,π−δ

1
3 ]

⋃
[π+δ

1
3 ,2π]

〈·, u2,±δ(y; p)〉
λ∗ + δ · h− λ2,±δ(p)

u2,±δ(x; p)dp

+

∫
[0,π−δ

1
3 ]

⋃
[π+δ

1
3 ,2π]

〈·, u1,±δ(y; p)〉
λ∗ + δ · h− λ1,±δ(p)

u1,±δ(x; p)dp.

(4.14)

Here and henceforth, 〈·, ·〉 denotes the duality pair on H̃−
1
2 (Γ)×H 1

2 (Γ).
Recall that φ1, φ2 are the two Dirac eigenmodes, with φ1 being odd and φ2 being even (see

Corollary 1.8). Let P be the projection operator defined by

P : H̃−
1
2 (Γ)→ H

1
2 (Γ), ψ 7→ 〈ψ, φ2〉φ2.

We further introduce the following four functions:

f1(h; δ) :=
1

2π

∫ π+δ
1
3

π−δ
1
3

1

δ · h+
√
δ2β2

∗ + α2
∗(p− p∗)2

L(p; δ)

1 + L(p; δ)
dp,

f2(h; δ) :=
1

2π

∫ π+δ
1
3

π−δ
1
3

1

δ · h−
√
δ2β2

∗ + α2
∗(p− p∗)2

1

1 + L(p; δ)
dp,

f̃1(h; δ) :=
1

2π

∫ π+δ
1
3

π−δ
1
3

1

δ · h+
√
δ2β2

∗ + α2
∗(p− p∗)2

1

1 + L(p; δ)
dp,

f̃2(h; δ) :=
1

2π

∫ π+δ
1
3

π−δ
1
3

1

δ · h−
√
δ2β2

∗ + α2
∗(p− p∗)2

L(p; δ)

1 + L(p; δ)
dp,

where

α∗ =
θ∗
γ∗
, β∗ =

t∗
γ∗
, L(p; δ) :=

α2
∗(p− p∗)2

(δβ∗ +
√
δ2β2

∗ + α2
∗(p− p∗)2)2

.

We have the following asymptotic expansions of the operators G±δ.

Proposition 4.2. There exists δ0 > 0 such that for 0 < δ < δ0, the operator Gδ defined in
(4.12) admits the following asymptotic expansion

Gδ(λ∗ + δ · h) = Tδ(λ∗ + δ · h) +
(
f1(h; δ) + f2(h; δ)

)
P +

(
R1(h; δ) + R2(h; δ)

)
, (4.15)
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where all functions and operators in (4.15) are analytic with respect to h in J̃ . Moreover, the
following hold uniformly for h ∈ J̃ :

lim
δ→0
‖R1(h; δ)‖

B(H̃−
1
2 (Γ),H

1
2 (Γ))

= 0, lim
δ→0
‖R2(h; δ)‖

B(H̃−
1
2 (Γ),H

1
2 (Γ))

= 0. (4.16)

Similarly,

G−δ(λ∗ + δ · h) = T−δ(λ∗ + δ · h) +
(
f̃1(h; δ) + f̃2(h; δ)

)
P +

(
R̃1(h; δ) + R̃2(h; δ)

)
, (4.17)

with
lim
δ→0
‖R̃1(h; δ)‖

B(H̃−
1
2 (Γ),H

1
2 (Γ))

= 0, lim
δ→0
‖R̃2(h; δ)‖

B(H̃−
1
2 (Γ),H

1
2 (Γ))

= 0. (4.18)

Proof. See Appendix D.

We next investigate the limiting behavior of the operator T±δ as δ → 0. To this end, we
define the following integral operator T0 ∈ B(H̃−

1
2 (Γ), H

1
2 (Γ)):

T0 =
1

2π

∫ 2π

0

∑
n≥3

〈·, un(y; p)〉
λ∗ − λn(p)

un(x; p)dp+
1

2π
p.v.

∫ 2π

0

∑
n=1,2

〈·, vn(y; p)〉
λ∗ − µn(p)

vn(x; p)dp.

Using (2.2), the kernel function of the operator T0 (denoted by T0(x, y;λ∗)) is related to the
Green’s function G(x, y;λ∗) by

G(x, y;λ∗) = T0(x, y;λ∗)−
i

2

v1(x, π)v1(y, π)

α∗
− i

2

v2(x, π)v2(y, π)

α∗
. (4.19)

The following two propositions give the properties of the operator T0.

Proposition 4.3. The kernel of T0 is given by

KerT0 = span

{
∂v1

∂x1

∣∣
Γ

}
. (4.20)

Proposition 4.4. T0 ∈ B(H̃−
1
2 (Γ), H

1
2 (Γ)) is a Fredholm operator of index zero.

Proof. See Appendix E.

We are now ready to investigate the limit of the operator G̃δ(λ∗ + δ · h).

Proposition 4.5. The following holds uniformly for h ∈ J̃ :

lim
δ→0

∥∥∥∥∥G̃δ(λ∗ + δ · h)−
(

2T0 + β(h)P
)∥∥∥∥∥
B(H̃−

1
2 (Γ),H

1
2 (Γ))

= 0,

where

β(h) = − 1

β∗α∗

h√
1− ( h

β∗
)2
.

Proof. See Appendix F.
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Denote the limiting operator above by G̃0(h) := 2T0 + β(h)P. We have

Proposition 4.6. Let h ∈ J̃ . Then G̃0(h) is a Fredholm operator with index zero, analytic
for h ∈ J̃ , and continuous for h ∈ ∂J̃ . As a function of h, it attains a unique characteristic
value h = 0 in J̃ , whose null multiplicity is one. Moreover, G̃0(h) is invertible for any h ∈ J̃
with h 6= 0.

Proof. First, by the boundedness of T0 and P, G̃0(h) ∈ B(H̃−
1
2 (Γ), H

1
2 (Γ)). By selecting the

principal branch of the square root on C\(−∞,−β∗)
⋃

(β∗,+∞), it is clear that β(h) is analytic
on J̃ , which implies the analyticity of G̃0(h) as seen by its definition; then its continuity for

h ∈ ∂J̃ is also clear. By Proposition 4.3, we deduce that T0 ∈ B(H̃−
1
2 (Γ), H

1
2 (Γ)) is a Fredholm

operator with zero index and KerT0 = span
{
∂v1
∂x1

∣∣
Γ

}
. Thus G̃0(h), which is obtained by

perturbing T0 with the rank-1 projection operator P, is a Fredholm operator with zero index.
Now we show that, as a function of h, G̃0(h) = 2T0 +β(h)P attains a unique characteristic

value h = 0 in J̃ . In another word, the following equation attains a nontrivial solution
w ∈ H̃− 1

2 (Γ) if and only if h = 0:
G̃0(h)w = 0. (4.21)

To this end, we apply ∂v1
∂x1

∣∣∣
Γ

to both hand sides of the equation above to get

0 = 2

〈
∂v1

∂x1

∣∣∣
Γ
,T0w

〉
+ 〈w, φ2〉β(h)

〈
∂v1

∂x1

∣∣∣
Γ
, φ2

〉
= 2

〈
w,T0

(∂v1

∂x1

)∣∣∣
Γ

〉
+ 〈w, φ2〉β(h)

〈
∂v1

∂x1

∣∣∣
Γ
, φ2

〉
= 〈w, φ2〉β(h)

〈
∂v1

∂x1

∣∣∣
Γ
, φ2

〉
.

where the second identity follows from the definition of T0. Recall the fact that φ2|Γ is
proportional to v1|Γ (See Remark 1.9). As a result,

〈w, φ2〉β(h)

〈
∂v1

∂x1

∣∣∣
Γ
, v1

〉
= 0. (4.22)

By Lemma 2.3,
〈
∂v1
∂x1

∣∣∣
Γ
, v1

〉
6= 0; thus (4.22) implies 〈w, φ2〉β(h) = 0, or equivalently

〈w, v1〉β(h) = 0.

If β(h) 6= 0, we have 〈w, v1〉 = 0 and T0w = 0, which imply that w = 0 by Proposition 4.3. But
this contradicts the assumption that w 6= 0. Hence, we deduce that the characteristic value
problem (4.21) attains solutions only when β(h) = 0. Solving β(h) = 0, we obtain a simple
root h = 0. Then Proposition 4.3 implies that h = 0 is a characteristic value of multiplicity

one with its associated eigenvector ∂v1
∂x1

∣∣∣
Γ
.

Finally, we prove the invertibility of G̃0(h) for h 6= 0. Indeed, since G̃0(h) has a unique
characteristic value h = 0, it is injective for h 6= 0; thus, G̃0(h) is invertible by noting that it
is a Fredholm operator of zero index.

Proposition 4.7. Let h ∈ J̃ . Then G̃δ(λ∗ + δ · h) is a Fredholm operator, and it is analytic
for h ∈ J̃ .
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Proof. The analyticity of G̃δ(λ∗ + δ · h) follows from the analyticity of the Green’s function
Gδ(x, y;λ) in λ, which holds for any λ = λ∗+ δ · h with h ∈ J̃ . Using Proposition 4.5 and 4.6,
and the fact that Fredholm index is stable under small perturbation (see Proposition 2.8), we
conclude that G̃δ(λ∗ + δ · h) is a Fredholm operator with zero index for h ∈ J̃ when δ > 0 is
sufficiently small.

4.3 Proof of Theorem 1.11

By Propositions 4.5 and 4.6, for sufficiently small δ > 0 and h ∈ ∂J̃ , we have∥∥∥∥∥G̃−1
0 (h)

(
G̃δ(λ∗ + δ · h)− G̃0(h)

)∥∥∥∥∥
B(H̃−

1
2 (Γ))

< 1,

where we have used the fact that G̃−1
0 (h) is uniformly bounded in norm for h ∈ ∂J̃ (it is

a direct consequence of the continuity and invertibility of G̃0(h) for h ∈ ∂J̃). Now, with
Proposition 4.6 and 4.7, an application of Theorem 2.9 shows that, for sufficiently small δ > 0,
(4.13) attains a unique characteristic value λ? := λ∗+h

? with h? ∈ J̃ . Let φ? be the associated
eigenvector, then we construct a solution to (1.6) by setting

λ = λ?, u? = u((x1, x2);λ?) =


∫

Γ

Gδ((x1, x2), y;λ)φ?(y;λ)dσ(y), x1 ≥ 0,

−
∫

Γ

G−δ((x1, x2), y;λ)φ?(y;λ)dσ(y), x1 < 0.

Meanwhile, we claim that λ? ∈ R. Otherwise, (λ?, u?) gives another solution to the eigenvalue

problem (1.6) and thus, h = λ?−λ∗
δ

is another characteristic value of G̃δ(λ∗ + δ · h) for h ∈ J̃ ,
which is different from h?. But this contradicts the uniqueness of the characteristic value of
G̃δ(λ∗ + δ · h) for h ∈ J̃ .

Finally, the assertion that u? decays exponentially away from Γ follows from the radiation
condition of the Green’s function G±δ (See Section 2.3). This completes the proof of the
theorem.

Appendix

Appendix A: Proof of Corollary 1.8

Proof of Corollary 1.8. Let v1(x) = Re v1(x) + i Im v1(x). We first claim that Re v1(x) and
Im v1(x) are linearly independent. Otherwise, there exists c ∈ R such that Re v1(x) =
c Im v1(x). Then the quasi-periodic boundary condition v1(x+ 1

2
e1) = iv1 gives

v1(x+
1

2
e1) = Re v1(x+

1

2
e1) + iIm v1(x+

1

2
e1) = (c+ i)Im v1(x+

1

2
e1),

v1(x+
1

2
e1) = iv1(x) = i(Re v1(x) + iIm v1(x)) = i(c+ i)Im v1(x),

which implies that i Im v1(x) = Im v1(x + 1
2
e1), and thus Im v1(x) = Re v1(x) = 0. This

contradiction proves the claim.
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We next show that the desired even/odd eigenmodes at the Dirac point can be constructed
by using linear combinations of Re v1 and Im v1. It is clear that both Re v1 and Im v1 are
eigenmodes at the Dirac point defined in Proposition 1.5. Note that both v1(x1, x2) and
v1(−x1, x2) are Bloch eigenmodes with the same quasi-periodic boundary condition in the
period-1

2
structure. Since the dimension of the eigenspace is one by Assumption 1.1, there

exists θ ∈ [0, 2π) such that v1(x1, x2) = eiθv1(−x1, x2). Set R :=

(
cos θ − sin θ
− sin θ − cos θ

)
. Then we

have (
Re v1(x1, x2)
Im v1(x1, x2)

)
= R

(
Re v1(−x1, x2)
Im v1(−x1, x2)

)
.

The real matrix R has two eigenvalues, −1 and 1. Let (a1, b1)T , (a2, b2)T ∈ R2 be the corre-
sponding real eigenvectors, i.e.,

R(a1, b1)T = −(a1, b1)T , R(a2, b2)T = (a2, b2)T .

We define
φ1 := a1Re v1 + b1Im v1, φ2 := a2Re v1 + b2Im v1.

Then one can check that φ1(−x1, x2) = −φ1(x1, x2), φ2(−x1, x2) = φ2(x1, x2). This gives the
desired construction.

Finally, note that φ1 is real-valued. Thus, the quasi-periodicity of φ1 and reflection-
symmetry allows us to set the corresponding boundary potential ϕ1 as

ϕ1 = (ϕref , ϕ)T ,

where ϕ ∈ H−
1
2 (∂D) is real-valued. Taking the reflection image of φ1 with respect to the

straight line x1 = 1
4
, we obtain an even mode φ2 with the boundary potential

ϕ2 = (ϕ,−ϕref )T .

Then the proof is completed.

Appendix B: Proof of Proposition 3.3

In Appendix B-C, the bracket 〈·, ·〉 denotes the dual pair between H−
1
2 (∂D)×H− 1

2 (∂D) and

H
1
2 (∂D)×H 1

2 (∂D).

Proof. Step 1. First we show that for (p, λ) near (π, λ∗),

〈ϕ, T (p, λ)ϕ〉 = 〈ϕ, T (p, λ)ϕ〉 for real-valued ϕ. (B.1)

Note that the quasi-periodic Green’s function for the empty waveguide defined in (3.3) has
the following properties:

Ge(x, y; π + hp, λ∗) = Ge(x, y; π − hp, λ∗),
Ge(x, y; π + hp, λ∗ + hλ) = Ge(y, x; π + hp, λ∗ + hλ),

(B.2)

for sufficiently small constants hp, hλ. Using the polar coordinate for the boundary ∂D and
Corollary 1.8, we have

〈ϕ, T (p, λ)ϕ〉 = V1(p, λ) + V2(p, λ) + V3(p, λ) + V4(p, λ),
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where

V1(p, λ) =

∫
[0,2π]×[0,2π]

Ge(r(θ1), r(θ2); p, λ) · ϕ1(θ2)ϕ1(θ1) · |r′(θ2)||r′(θ1)|dθ2dθ1,

V2(p, λ) =

∫
[0,2π]×[0,2π]

Ge(r(θ1),
1

2
e1 + r(θ2); p, λ) · ϕ2(θ2)ϕ1(θ1) · |r′(θ2)||r′(θ1)|dθ2dθ1,

V3(p, λ) =

∫
[0,2π]×[0,2π]

Ge(
1

2
e1 + r(θ1), r(θ2); p, λ) · ϕ1(θ2)ϕ2(θ1) · |r′(θ2)||r′(θ1)|dθ2dθ1,

V4(p, λ) =

∫
[0,2π]×[0,2π]

Ge(r(θ1), r(θ2); p, λ) · ϕ2(θ2)ϕ2(θ1) · |r′(θ2)||r′(θ1)|dθ2dθ1.

We claim that V1, V4, and V2 + V3 are all real numbers. For V1, a change of variable yields

2V1(p, λ) =

∫
[0,2π]×[0,2π]

Ge(r(θ1), r(θ2); p, λ) · ϕ1(θ2)ϕ1(θ1) · |r′(θ2)||r′(θ1)|dθ2dθ1

+

∫
[0,2π]×[0,2π]

Ge(r(θ2), r(θ1); p, λ) · ϕ1(θ1)ϕ1(θ2) · |r′(θ1)||r′(θ2)|dθ1dθ2

=

∫
[0,2π]×[0,2π]

(
Ge(r(θ1), r(θ2)) +Ge(r(θ2), r(θ1))

)
ϕ1(θ2)ϕ1(θ1)|r′(θ2)||r′(θ1)|dθ2dθ1.

Thus (B.2) shows that the integrand of V1(p, λ) is real, which implies that V1(p, λ) ∈ R.
Similarly, it can be proved that V4(p, λ) ∈ R. Besides,

V2(p, λ) + V3(p, λ) =

∫
[0,2π]×[0,2π]

Ge(r(θ1),
1

2
e1 + r(θ2); p, λ) · ϕ2(θ2)ϕ1(θ1) · |r′(θ2)||r′(θ1)|dθ2dθ1

+

∫
[0,2π]×[0,2π]

Ge(
1

2
e1 + r(θ2), r(θ1); p, λ) · ϕ1(θ1)ϕ2(θ2) · |r′(θ1)||r′(θ2)|dθ1dθ2

=

∫
[0,2π]×[0,2π]

(
Ge(r(θ1),

1

2
e1 + r(θ2)) +Ge(

1

2
e1 + r(θ2), r(θ1))

)
ϕ1(θ1)ϕ2(θ2)|r′(θ1)||r′(θ2)|dθ1dθ2,

which is also real by invoking (B.2). Thus, 〈ϕ, T (p, λ)ϕ〉 is real for any real-valued ϕ.

Step 2. We prove that 〈ϕ1, Tpϕ1〉 = 0, and in a similar way 〈ϕ2, Tpϕ2〉 = 0. From (B.2),
we have

〈ϕ1, T (p∗ + h, λ∗)ϕ1〉 = 〈ϕ1, T (p∗ − h, λ∗)ϕ1〉.

Moreover, since ϕ1 is real-valued, (B.1) gives that

〈ϕ1, T (p∗ − h, λ∗)ϕ1〉 = 〈ϕ1, T (p∗ − h, λ∗)ϕ1〉 = 〈ϕ1, T (p∗ − h, λ∗)ϕ1〉.

In conclusion,
〈ϕ1, T (p∗ + h, λ∗)ϕ1〉 = 〈ϕ1, T (p∗ − h, λ∗)ϕ1〉.

Then by the smoothness of 〈ϕ1, T (p, λ∗)ϕ1〉 in p near p = π, we obtain 〈ϕ1, Tpϕ1〉 = 0.
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Step 3. We show that 〈ϕ1, Tpϕ2〉 = −〈ϕ2, Tpϕ1〉 is a pure imaginary number. First,

〈ϕ2, T (p, λ)ϕ1〉 =

∫
[0,2π]×[0,2π]

Ge(r(θ1), r(θ2); p, λ) · ϕref (θ2)ϕ(θ1) · |r′(θ2)||r′(θ1)|dθ2dθ1

+

∫
[0,2π]×[0,2π]

Ge(r(θ1),
1

2
e1 + r(θ2); p, λ) · ϕ(θ2)ϕ(θ1) · |r′(θ2)||r′(θ1)|dθ2dθ1

−
∫

[0,2π]×[0,2π]

Ge(
1

2
e1 + r(θ1), r(θ2); p, λ) · ϕref (θ2)ϕref (θ1) · |r′(θ2)||r′(θ1)|dθ2dθ1

−
∫

[0,2π]×[0,2π]

Ge(r(θ1), r(θ2); p, λ) · ϕ(θ2)ϕref (θ1) · |r′(θ2)||r′(θ1)|dθ2dθ1

=: U1(p, λ) + U2(p, λ) + U3(p, λ) + U4(p, λ).
(B.3)

Note that the Green’s function Ge can be written in the following form

Ge(x, y; p, λ) =
∑
n∈Z

f(λ, |pn|, x2, y2)eipn(x1−y1), (B.4)

where pn := p+ 2nπ (n ∈ Z) and f : R4 → R is real-valued when λ near λ∗. It follows that

Ge(r(θ1), r(π − θ2); p, λ)−Ge(r(π − θ1), r(θ2); p, λ)

=
∑
n∈Z

f
(
λ, |pn|, r(θ1)sin(θ1), r(π − θ2)sin(π − θ2)

)
e
ipn

(
r(θ1)cos(θ1)−r(π−θ2)cos(π−θ2)

)

−
∑
n∈Z

f
(
λ, |pn|, r(π − θ1)sin(π − θ1), r(θ2)sin(θ2)

)
e
ipn

(
r(π−θ1)cos(π−θ1)−r(θ2)cos(θ2)

)

= 2i
∑
n∈Z

f
(
λ, |pn|, r(θ1)sinθ1, r(θ2)sinθ2

)
sin
[
pn(r(θ1)cosθ1 + r(θ2)cosθ2)

]
,

where r(π − θ) = r(θ) is used in the last equality above. Therefore,

U1(p, λ) + U4(p, λ)

= 2i
∑
n∈Z

∫
[0,2π]×[0,2π]

f
(
λ, |pn|, r(θ1)sinθ1, r(θ2)sinθ2

)
sin
[
pn(r(θ1)cosθ1 + r(θ2)cosθ2)

]
· ϕ(θ2)ϕ(θ1) · |r′(θ2)||r′(θ1)|dθ2dθ1

(B.5)

which is purely imaginary for p near p∗ = π and λ = λ∗. Similarly, we can show that
U2(p, λ) + U3(p, λ) is also purely imaginary. Therefore

〈ϕ2, Tpϕ1〉 =
∂

∂p

(
U1 + U2 + U3 + U4

)
(π, λ∗)

is also purely imaginary. We denote 〈ϕ2, Tpϕ1〉 = iθ∗ for some real number θ∗.

Step 4. We prove 〈ϕ2, Tλϕ1〉 = 〈ϕ1, Tλϕ2〉 = 0. Observe that the n-th and the (−n−1)-th
term in (B.5) cancel out at p = π. Therefore U1(π, λ) + U4(π, λ) ≡ 0 for λ near λ∗. Similarly,
there holds U2(π, λ) + U3(π, λ) ≡ 0. It follows that 〈ϕ2, T (π, λ)ϕ1〉 ≡ 0 for λ near λ∗, which
gives 〈ϕ2, Tλϕ1〉 = 0. The equality 〈ϕ1, Tλϕ2〉 = 0 can be proved similarly.

Step 5. Finally, the equality 〈ϕ1, Tλϕ1〉 = 〈ϕ2, Tλϕ2〉 = γ∗ (i = 1, 2) for some real number
γ∗ can be proved in the same way as 〈ϕ2, Tpϕ1〉.
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Appendix C: Proof of Proposition 3.5

Proof. Notice that the perturbation of the periodic media is introduced by shifting the obsta-
cles. Hence we only need to consider the off-diagonal terms 〈ϕj , Tδϕi〉 for i 6= j. In particular,
when j = 1 and i = 2,〈
ϕ1,

(
0 T12,δ(p∗, λ∗)

T21,δ(p∗, λ∗) 0

)
ϕ2

〉
= −

∫
[0,2π]×[0,2π]

Ge(r(θ1),
1 + 2δ

2
e1 + r(θ2); p∗, λ∗) · ϕref (θ2)ϕref (θ1) · |r′(θ2)||r′(θ1)|dθ2dθ1

+

∫
[0,2π]×[0,2π]

Ge(
1 + 2δ

2
e1 + r(θ1), r(θ2); p∗, λ∗) · ϕ(θ2)ϕ(θ1) · |r′(θ2)||r′(θ1)|dθ2dθ1

=

∫
[0,2π]×[0,2π]

[
Ge(

1 + 2δ

2
e1 + r(θ1), r(θ2); p∗, λ∗)−Ge(r(π − θ1),

1 + 2δ

2
e1 + r(π − θ2); p∗, λ∗)

]
· ϕ(θ2)ϕ(θ1) · |r′(θ2)||r′(θ1)|dθ2dθ1.

(C.1)
From (B.4),

Ge(
1 + 2δ

2
e1 + r(θ1), r(θ2); p∗, λ∗)−Ge(r(π − θ1),

1 + 2δ

2
e1 + r(π − θ2); p∗, λ∗)

=
∑
n≥0

f(λ∗, |pn|, r(θ1) sin θ1, r(θ2) sin θ2) cos

(
(2n+ 1)π

(1 + 2δ

2
+ r(θ1) cos θ1 − r(θ2) cos θ2

))
−
∑
n≥0

f(λ∗, |pn|, r(π − θ1) sin(π − θ1), r(π − θ2) sin(π − θ2))

· cos

(
(2n+ 1)π

(
r(π − θ1) cos(π − θ1)− r(π − θ2) cos(π − θ2)− 1 + 2δ

2

))

=
∑
n≥0

f(λ∗, |pn|, r(θ1) sin θ1, r(θ2) sin θ2) cos

(
(2n+ 1)π(

1 + 2δ

2
+ r(θ1) cos θ1 − r(θ2) cos θ2)

)
−
∑
n≥0

f(λ∗, |pn|, r(θ1) sin θ1, r(θ2) sin θ2) cos

(
−(2n+ 1)π(

1 + 2δ

2
+ r(θ1) cos θ1 − r(θ2) cos θ2)

)
= 0.

Thus, for δ sufficiently small,〈
ϕ1,

(
0 T12,δ(p∗, λ∗)

T21,δ(p∗, λ∗) 0

)
ϕ2

〉
≡ 0.

A similar calculation yields〈
ϕ2,

(
0 T12,δ(p∗, λ∗)

T21,δ(p∗, λ∗) 0

)
ϕ1

〉
≡ 0.
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Hence 〈ϕ2, Sϕ1〉 = 〈ϕ1, Sϕ2〉 = 0 by recalling that S = ∂Tδ
∂δ

(p∗, λ∗; δ)
∣∣∣
δ=0

. On the other hand,

(B.4) also implies that

Ge(r(π − θ1),
1 + 2δ

2
e1 + r(θ2); p∗, λ∗) +Ge(

1 + 2δ

2
e1 + r(θ1), r(π − θ2); p∗, λ∗)

= 4
∑
n≥0

f
(
λ∗, (2n+ 1)π, r(θ1) sin θ1, r(θ2) sin θ2

)
cos

(
(2n+ 1)π

(1

2
+ δ + r(θ1) cos θ1 + r(θ2) cos θ2

))
,

Ge(r(θ1),
1 + 2δ

2
e1 + r(π − θ2); p∗, λ∗) +Ge(

1 + 2δ

2
e1 + r(π − θ1), r(θ2); p∗, λ∗)

= 4
∑
n≥0

f
(
λ∗, (2n+ 1)π, r(θ1) sin θ1, r(θ2) sin θ2

)
cos

(
(2n+ 1)π

(1

2
+ δ − r(θ1) cos θ1 − r(θ2) cos θ2

))
.

It follows that 〈ϕ1, Tδ(p∗, λ∗)ϕ1〉 = −〈ϕ2, Tδ(p∗, λ∗)ϕ2〉 ∈ R, by following the same lines as
in (C.1). Therefore, we conclude that 〈ϕ1, Sϕ1〉 = −〈ϕ2, Sϕ2〉 ∈ R.

Appendix D: Proof of Proposition 4.2

Proof. We only prove (4.15) here. The proof of (4.17) is identical. The idea is to split the
integral expression of the Green’s function (2.14) into different parts and apply asymptotic
expansion to each part. We start with the following decomposition:

Gδ(x, y;λ) = Tδ(x, y;λ) + U1(x, y;λ, δ) + U2(x, y;λ, δ),

where

Tδ(x, y;λ) =
1

2π

(∫ 2π

0

∑
n≥3

un,δ(x; p)un,δ(y; p)

λ− λn,δ(p)
dp

+

∫
[0,π−δ

1
3 ]

⋃
[π+δ

1
3 ,2π]

u1,δ(x; p)u1,δ(y; p)

λ− λ1,δ(p)
dp+

∫
[0,π−δ

1
3 ]

⋃
[π+δ

1
3 ,2π]

u2,δ(x; p)u2,δ(y; p)

λ− λ2,δ(p)
dp

)
,

U1(x, y;λ, δ) =
1

2π

∫
[π−δ

1
3 ,π+δ

1
3 ]

u1,δ(x; p)u1,δ(y; p)

λ− λ1,δ(p)
dp,

U2(x, y;λ, δ) =
1

2π

∫
[π−δ

1
3 ,π+δ

1
3 ]

u2,δ(x; p)u2,δ(y; p)

λ− λ2,δ(p)
dp.

Note that Tδ(x, y;λ) is the kernel function of the integral operator Tδ(λ) defined in (4.14).
We only need to consider the functions U1 and U2. We first study the asymptotics of U2. Set
α∗ = θ∗

γ∗
and β∗ = t∗

γ∗
. By Theorem 3.6, for p ∈ (π − δ 1

3 , π + δ
1
3 ) we have

λ1,δ(p) = λ∗ −
√
δ2β2

∗ + α2
∗(p− p∗)2 (1 +O(p− p∗, δ)) ,

u1,δ(x; p) = N(p; δ)

(
iα∗(p− p∗)

δβ∗ +
√
δ2β2

∗ + α2
∗(p− p∗)2

φ2(x) + r1(x; p, δ)

)
, ‖r1(x; p, δ)‖

H
1
2 (Γ)

= O(δ
1
3 )

(D.1)λ2,δ(p) = λ∗ +
√
δ2β2

∗ + α2
∗(p− p∗)2 (1 +O(p− p∗, δ)) ,

u2,δ(x; p) = N(p; δ) (φ2(x) + r2(x; p, δ)) , ‖r2(x; p, δ)‖
H

1
2 (Γ)

= O(δ
1
3 ),

(D.2)
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where we have used the fact that the odd Dirac eigenmode φ1 vanishes on the interface Γ.
The normalization factor N(p) admits the following expansion:

N(p; δ) =
(

1 + L(p; δ) +O(δ
1
3 )
)− 1

2
,

where L(p; δ) = α2
∗(p−p∗)2

(δβ∗+
√
δ2β2
∗+α

2
∗(p−p∗)2)2

. By substituting (D.2) into the integral U2(x, y;λ, δ)

and setting h := λ−λ∗
δ

, we have

U2(x, y;λ, δ)

=
1

2π

∫ π+δ
1
3

π−δ
1
3

φ2(x)φ2(y) + φ2(x)r2(y; p, δ) + r2(x; p, δ)φ2(y) + r2(x; p, δ)r2(y; p, δ)

δ · h−
√
δ2β2

∗ + α2
∗(p− p∗)2 (1 +O(p− p∗, δ))

N2(p; δ)dp.

(D.3)

Observe that the following estimates hold uniformly for |p− p∗| ≤ δ
1
3 and h ∈ J̃ :

δ · h−
√
δ2β2

∗ + α2
∗(p− p∗)2 (1 +O(p− p∗, δ)) =

(
δ · h−

√
δ2β2

∗ + α2
∗(p− p∗)2

)
(1 +O(δ

1
3 )),

N(p; δ) = (1 + L(p; δ))−
1
2 (1 +O(δ

1
3 )), ‖r2(x; p, δ)‖

H
1
2 (Γ)

= O(δ
1
3 ).

(D.4)
We can show that the leading order term of U2 is given by f2(h; δ)φ2(x)φ2(y), where

f2(h; δ) =
1

2π

∫ π+δ
1
3

π−δ
1
3

1

δ · h−
√
δ2β2

∗ + α2
∗(p− p∗)2

1

1 + L(p; δ)
dp.

The remainder term is denoted as R2(x, y;h, δ) := U2 − f2φ2(x)φ2(y). Let R2(h; δ) be the
integral operator with kernel R2(x, y;h, δ). Note that (D.4) gives that

R2(x, y;h, δ) =
1

2π

∫ π+δ
1
3

π−δ
1
3

φ2(x)r2(y; p, δ) + r2(x; p, δ)φ2(y) + r2(x; p, δ)r2(y; p, δ)

δ · h−
√
δ2β2

∗ + α2
∗(p− p∗)2

1 +O(δ
1
3 )

1 + L(p; δ)
dp

+
1

2π

∫ π+δ
1
3

π−δ
1
3

φ2(x)φ2(y)

δ · h−
√
δ2β2

∗ + α2
∗(p− p∗)2

O(δ
1
3 )

1 + L(p; δ)
dp.

By (D.4), we have max
|p−p∗|<δ

1
3
‖r2(x; p, δ)‖

H
1
2 (Γ)

= O(δ
1
3 ). On the other hand,

∫ π+δ
1
3

π−δ
1
3

∣∣∣ 1

δ · h−
√
δ2β2

∗ + α2
∗(p− p∗)2

∣∣∣| 1

1 + L(p; δ)
|dp

.
∫ π+δ

1
3

π−δ
1
3

∣∣∣ 1

δ · h−
√
δ2β2

∗ + α2
∗(p− p∗)2

∣∣∣dp
=

∫ tan−1(α∗
β∗
δ−

2
3 )

−tan−1(α∗
β∗
δ−

2
3 )

β∗
α∗
·
∣∣∣ sec2(θ)

h− |β∗| sec(θ)

∣∣∣dθ = O(log(δ)).

Therefore, we can conclude that ‖R2(h; δ)‖
B(H̃−

1
2 (Γ),H

1
2 (Γ))

= O(δ
1
3 log(δ)), whence the second

equality in (4.16) follows.
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The analysis of U1 is similar. Set its leading-order term as

f1(h; δ)φ2(x)φ2(y) :=

 1

2π

∫ π+δ
1
3

π−δ
1
3

1

δ · h+
√
δ2β2

∗ + α2
∗(p− p∗)2

L(p; δ)

1 + L(p; δ)
dp

φ2(x)φ2(y)

and the remainder term R1(x, y;h, δ) := U1(x, y;λ, δ)− f1(h; δ)φ2(x)φ2(y). We denote the op-
erator associated with f1(h; δ)φ2(x)φ2(y) and R1(x, y;h, δ) by f1(h; δ)P and R1(h; δ), respec-
tively. Then the first equality in (4.16) follows directly by repeating the work of estimating f2

and R2 on f1 and R1, and we omit it for brevity.
Combining all the results above, we arrive at (4.15). Finally, we point out that there is

no essential difference between the analysis of Gδ and G−δ: by replacing (D.1) and (D.2) with
(3.18) and (3.19), we can deduce (4.17) by following the same line of argument.

Appendix E: Proof of Proposition 4.3 and 4.4

In Appendix E-F, the duality pair between H̃−
1
2 (Γ) and H

1
2 (Γ) is denoted by 〈·, ·〉.

Proof of Proposition 4.3. We first prove (4.20). Observe that for y ∈ Γ, it follows from (4.19)
that

T0

(
∂v1

∂x1

∣∣∣
Γ

)
(y)=

∫
Γ

G(y, x;λ∗)
∂v1

∂x1

dx2 +
i

2α∗

∫
Γ

(
v1(y)v1(x) + v2(y)v2(x)

) ∂v1

∂x1

(x)dx2.

By Proposition 2.5, we have
∫

Γ
G(y, x;λ∗)

∂v1
∂x1
dx2 = 1

2
v1(y); on the other hand, Lemma 2.2

implies that i
2α∗

∫
Γ

(
v1(y)v1(x) + v2(y)v2(x)

)
∂v1
∂x1

(x)dx2 = i
α∗

∫
Γ
v1(y)v1(x) ∂v1

∂x1
(x)dx2. Thus

T0

(
∂v1

∂x1

∣∣∣
Γ

)
(y)=

1

2
v1(y) +

i

α∗
v1(y)

∫
Γ

v1(x)
∂v1

∂x1

(x)dx2.

By Lemma 2.3, we obtain

T0

(
∂v1

∂x1

∣∣∣
Γ

)
(y) =

1

2
v1(y)− 1

2
v1(y) = 0.

Thus span
{
∂v1
∂x1

∣∣
Γ

}
⊂ KerT0. Conversely, suppose ψ ∈ KerT0 and 〈ψ, v1〉 = 0. We aim to show

ψ = 0. Note that (2.3) and (4.19) lead to

0 = 2T0ψ =

(
2

∫
Γ

(
G+

0 (x, y;λ∗)−
i

2α∗
v1(x)v1(y) +

i

2α∗
v2(x)v2(y)

)
ψ(y)dy2

) ∣∣∣
Γ

=

(
2

∫
Γ

G+
0 (x, y;λ∗)ψ(y)dy2

) ∣∣∣
Γ
− i

α∗
v1(x)

∣∣∣
Γ
·
∫

Γ

v1(y)ψ(y)dy2 +
i

α∗
v2(x)

∣∣∣
Γ
·
∫

Γ

v2(y)ψ(y)dy2

Then Lemma 2.2 gives that

0=

(
2

∫
Γ

G+
0 (x, y;λ∗)ψ(y)dy2

) ∣∣∣
Γ
− i

α∗
v1(x)

∣∣∣
Γ
·
∫

Γ

v1(y)ψ(y)dy2 +
i

α∗
v1(x)

∣∣∣
Γ
·
∫

Γ

v1(y)ψ(y)dy2

=

(
2

∫
Γ

G+
0 (x, y;λ∗)ψ(y)dy2

) ∣∣∣
Γ
.
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Thus, if we define v(x) := 2
∫

Γ
G+

0 (x, y;λ∗)ψ(y)dy2 for x ∈ Ω+, then we have v|Γ = 0. More-
over, using (2.3) and the fact that 〈ψ, v1〉 = 0, we have another expression of v(x)

v(x) = 2

∫
Γ

G(x, y;λ∗)ψ(y)dy2, x ∈ Ω+. (E.1)

We next show that v(x) ≡ 0 for x ∈ Ω+, which shall lead to ψ = 0 as claimed. For this
purpose, we consider the following odd extension of v:

ṽ(x1, x2) =

{
v(x1, x2), x1 ≥ 0,

− v(−x1, x2), x1 < 0,

Since v|Γ = 0, we have ṽ ∈ V(λ∗)
⋂
L2(Ω) by noting that G+

0 introduced in (2.3) decays
exponentially. Thus ṽ gives a L2-eigenmode for the unperturbed periodic structure Ω. But by
Assumption 1.1, λ∗ is not an embedded eigenvalue. Therefore ṽ ≡ 0 and hence v(x) ≡ 0 for
x ∈ Ω+. On the other hand, using Lemma 2.4, (E.1) implies that v(x) can be extended to the
whole space Ω. Moreover, the extended function is identically zero in Ω. It follows that

0 = (∆x + λ∗)v(x) = 2(∆x + λ∗)

∫
Γ

G(x, y;λ∗)ψ(y2)dy2

= 2(∆x + λ∗)

∫
Ω

G(x, y;λ∗)
(
ψ(y2)δ̃(y1)

)
dy = ψ(y2)δ̃(y1).

Therefore ψ = 0 in H̃−
1
2 (Γ). In conclusion, KerT0 is at most one-dimensional. Finally, since

KerT0 ⊃ span( ∂v1
∂x1

∣∣
Γ
) and 〈 ∂v1

∂x1
, v1〉 6= 0, we conclude that KerT0 = span{ ∂v1

∂x1

∣∣
Γ
}.

Proof of Proposition 4.4. The proof here follows the same lines as in Lemma 3.1. We point
out the major difference in the proof and skip the analogous steps.

Let Tr : H1(Ω) → H
1
2 (Γ), f 7→ f |Γ be the trace operator and E : H

1
2 (Γ) → H1(Ω)

be the Sobolev extension operator such that Tr ◦ E = id|
H

1
2 (Γ)

. For each ψ ∈ H̃−
1
2 (Γ), let

cn(ψ; p) := 〈ψ, un(·; p)〉, where {un(·; p)}n≥1 are the Bloch eigenmodes associated with the

waveguide in Figure 1 for the eigenvalue λn(p). Now we decompose T0 as T0 = T(1)
0 + T(2)

0 ,

where for any ψ ∈ H̃− 1
2 (Γ),

T(1)
0 ψ := Tr

(
1

2π

∫ 2π

0

∑
n≥3

cn(ψ; p)

λ∗ − λn(p)
un(·; p)dp− 1

2π

∫ 2π

0

∑
n=1,2

cn(ψ; p)un(·; p)dp

)
,

T(2)
0 ψ := Tr

(
1

2π
p.v.

∫ 2π

0

∑
n=1,2

cn(ψ; p)

λ∗ − µn(p)
vn(·; p)dp+

1

2π

∫ 2π

0

∑
n=1,2

cn(ψ; p)un(·; p)dp

)
.

Similar to the proof of Lemma 3.1, we shall show that T(1)
0 is invertible while T(2)

0 is compact,
which then implies that T0 is a Fredholm operator of zero index.

To show the invertibility of T(1)
0 , we only need to: (1) establish an estimate analogous to

(3.9), which implies the injectivity of T(1)
0 and closedness of Ran (T(1)

0 ); (2) obtain an identity

parallel to (3.12) which proves that Ran (T(1)
0 ) is dense in H

1
2 (Γ). Note that (3.12) for T(1)

0
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stills holds when the dual pair is taken on H̃−
1
2 (Γ)×H 1

2 (Γ), thus (2) is proved. Now we prove
(1). Note that the following inequality, which is the counterpart of (3.10), is straightforward

|〈ψ,T(1)
0 ψ〉| &

∫ 2π

0

∑
n≥1

|cn(ψ; p)|2

|λ∗ − λn(p)|
dp. (E.2)

By the Floquet-Bloch theory, we can write Eφ =
∫ 2π

0

∑
n≥1 an(p)un(x; p)dp for each φ ∈

H
1
2 (Γ). It follows that∣∣∣〈ψ, φ〉∣∣∣ =

∣∣∣〈ψ,Tr(Eφ)〉
∣∣∣ =

∣∣∣ ∫ 2π

0

∑
n≥1

an(p) · cn(ψ; p)dp
∣∣∣

≤
∣∣∣ ∫ 2π

0

(
∑
n≥1

|λ∗ − λn(p)||an(p)|2)
1
2 · (
∑
n≥1

|cn(ψ; p)|2

|λ∗ − λn(p)|
)
1
2dp
∣∣∣

≤

(∫ 2π

0

∑
n≥1

|λ∗ − λn(p)||an(p)|2dp

) 1
2
(∫ 2π

0

∑
n≥1

|cn(ψ; p)|2

|λ∗ − λn(p)|
dp

) 1
2

.

(∫ 2π

0

∑
n≥1

(1 + λn(p))|an(p)|2dp

) 1
2
(∫ 2π

0

∑
n≥1

|cn(ψ; p)|2

|λ∗ − λn(p)|
dp

) 1
2

.

Using (2.16), we further obtain

∣∣∣〈ψ, φ〉∣∣∣ . ‖Eφ‖H1(Ω)

(∫ 2π

0

∑
n≥1

|cn(ψ; p)|2

|λ∗ − λn(p)|
dp

) 1
2

.

Since ‖Eφ‖H1(Ω) . ‖φ‖H 1
2 (Γ)

, we can conclude that

‖ψ‖
H̃−

1
2 (Γ)

.

(∫ 2π

0

∑
n≥1

|cn(ψ; p)|2

|λ∗ − λn(p)|
dp

) 1
2

. (E.3)

Then the desired estimate |〈ψ,T(1)
0 ψ〉| & ‖ψ‖

H̃−
1
2 (Γ)

follows from (E.2) and (E.3).

We next show that T(2)
0 : H̃−

1
2 (Γ) → H

1
2 (Γ) is compact. To this end, we fix a smooth

domain O such that Γ ⊂ O ⊂ Ω. Then, by using the compactness of the embedding of
H2(O) into H1(O) and the boundedness of the restriction operator from H1(O) to H

1
2 (Γ), it

is sufficient to show that the natural extension of (T(2)
0 ψ)(x) (x ∈ O) is uniformly bounded

in H2(O)-norm for ‖ψ‖
H̃−

1
2 (Γ)
≤ 1. Here we only estimate the H2(O)-norm of uψ(x) :=

1
2π

p.v.
∫ 2π

0
c1(ψ;p)
λ∗−µ1(p)

v1(x; p)dp, while the other terms in T(2)
0 ψ can be estimated similarly. To

proceed, recall that both µ1(p) and v1(x; p) are analytic in p within a complex neighborhood
of [0, 2π], which implies the following inequality by the principal value estimate of Banach-
valued function[8],

‖uψ‖H2(O) . max
0≤p≤2π

(
‖v1(·; p)‖H2(O) + ‖∂pv1(·; p)‖H2(O)

)
‖ψ‖

H̃−
1
2 (Γ)

. (E.4)
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For the first term in (E.4), note that the regularity of Laplacian eigenfunctions implies that
‖v1(·; p)‖H2(O) <∞ for each p ∈ [0, 2π]. Hence the analyticity gives max0≤p≤2π ‖v1(·; p)‖H2(O) <
∞. Second, note that the partial derivative ∂pv1(·; p) solves the following equation

(∆x + µ1(p))∂pv1(x; p) = µ′1v1(x; p), x ∈ O.

Then a standard regularity theory of elliptic equations implies that max0≤p≤2π ‖∂pv1(·; p)‖H2(O) <
∞. Thus the uniformly boundedness of ‖uψ‖H2(O) follows from (E.4). This completes the proof
of the proposition.

Appendix F: Proof of Proposition 4.5

Proof. Step 1. By (4.15) and (4.17),(
Gδ + G−δ

)
(λ∗ + δ · h) =

(
Tδ + T−δ

)
(λ∗ + δ · h)

+
[
(f1 + f2 + f̃1 + f̃2)(h; δ)P + (R1 + R2 + R̃1 + R̃2)(h; δ)

]
.

(F.1)

By Proposition 4.2, limδ→0 ‖R1 + R2 + R̃1 + R̃2‖ = 0. Moreover, a direct calculation shows
that

(f1 + f2 + f̃1 + f̃2)(h; δ) =
1

2π

∫ π+δ
1
3

π−δ
1
3

(
1

δ · h−
√
δ2β2

∗ + α2
∗(p− p∗)2

+
1

δ · h+
√
δ2β2

∗ + α2
∗(p− p∗)2

)
dp

= −δ · h
π

∫ π+δ
1
3

π−δ
1
3

1

δ2(β2
∗ − h2) + α2

∗(p− p∗)2
dp = − 1

πβ∗α∗

h√
1− ( h

β∗
)2
· 2 tan−1(

α∗√
β2
∗ − h2

δ−
2
3 ).

For h ∈ J̃ , we can show that the following convergence holds uniformly:

lim
δ→0

(f1 + f2 + f̃1 + f̃2)(h; δ) = β(h) := − 1

β∗α∗

h√
1− ( h

β∗
)2
.

We now investigate the limit of the term Tδ(λ∗ + δ · h) in the rest of the proof.
Step 2. We decompose respectively the operators Tδ(λ) and T0 as

Tδ(λ) = Tpropδ (λ) + Tevanδ (λ), T0 = Tprop0 + Tevan0 ,

with 
Tpropδ (λ) =

1

2π

∫
[0,π−δ

1
3 ]

⋃
[π+δ

1
3 ,2π]

∑
n=1,2

〈·, un,δ(x; p)〉
λ− λn,δ(p)

un,δ(x; p)dp,

Tevanδ (λ) =
1

2π

∫ 2π

0

∑
n≥3

〈·, un,δ(x; p)〉
λ− λn,δ(p)

un,δ(x; p)dp,

(F.2)


Tprop0 =

1

2π
lim
ε→0

∫
[0,π−ε)

⋃
(π+ε,2π]

∑
n=1,2

〈·, vn(x; p)〉
λ∗ − λn(p)

vn(x; p)dp,

Tevan0 =
1

2π

∫ 2π

0

∑
n≥3

〈·, un(x; p)〉
λ∗ − λn(p)

un(x; p)dp,
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where vn and µn (n = 1, 2) are introduced in Proposition 1.5. We further introduce the
following auxiliary operator

Tprop0,δ =
1

2π

∑
n=1,2

∫
[0,π−δ

1
3 ]

⋃
[π+δ

1
3 ,2π]

〈·, un(x; p)〉
λ∗ − λn(p)

un(x; p)dp

=
1

2π

∑
n=1,2

∫
[0,π−δ

1
3 ]

⋃
[π+δ

1
3 ,2π]

〈·, vn(x; p)〉
λ∗ − µn(p)

vn(x; p)dp.

Step 3. In this step, we show that

lim
δ→0
‖Tpropδ (λ∗ + δ · h)− Tprop0 ‖

B(H̃−
1
2 (Γ),H

1
2 (Γ))

= 0. (F.3)

First of all, we prove the following limit

lim
δ→0
‖Tprop0,δ − Tprop0 ‖

B(H̃−
1
2 (Γ),H

1
2 (Γ))

= 0, (F.4)

Indeed, the definitions of Tprop0,δ and Tprop0 give that

(Tprop0,δ −T
prop
0 )ψ =

1

2π

∑
n=1,2

lim
ε→0

∫
[π−δ

1
3 ,π−ε)

⋃
(π+ε,π+δ

1
3 ,2π]

〈ψ(y), vn(y; p)〉
λ∗ − µn(p)

vn(x; p)dp, ψ ∈ H̃−
1
2 (Γ).

Then the analyticity of vn and µn (n = 1, 2) give the following estimate

‖(Tprop0,δ − Tprop0 )ψ‖
H

1
2 (Γ)

. δ
1
3

∑
n=1,2

(
‖vn(x; π)‖

H
1
2 (Γ)

+ ‖∂pvn(x; π)‖
H

1
2 (Γ)

)
‖ψ‖

H̃−
1
2 (Γ)

which is similar to (E.4). Thus

‖Tprop0,δ − Tprop0 ‖
B(H̃−

1
2 (Γ),H

1
2 (Γ))

. δ
1
3

∑
n=1,2

(
‖vn(x; π)‖

H
1
2 (Γ)

+ ‖∂pvn(x; π)‖
H

1
2 (Γ)

)
,

where (F.4) follows.
Next, we prove that

lim
δ→0
‖Tpropδ (λ∗ + δ · h)− Tpropδ (λ∗)‖ = 0. (F.5)

Note that by Theorem 3.6 and Assumption 1.1, the following estimate holds uniformly for all
h ∈ J̃ and p ∈ [0, π − δ 1

3 ]
⋃

[π + δ
1
3 , 2π]

|λ∗ + δ · h− λn,δ(p)| & δ
1
3 , ‖un,δ(·; p)‖H 1

2 (Γ)
= O(1) (n = 1, 2).

Next, for each ψ ∈ H̃− 1
2 (Γ), let v := (Tpropδ (λ∗ + δ · h)− Tpropδ (λ∗))ψ ∈ H

1
2 (Γ). Note that v(x)
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can be extended to x ∈ Ωδ using (F.2). We can show that

‖v‖2
H1(Ωδ)

=
∥∥∥ 1

2π

∑
n=1,2

∫
[0,π−δ

1
3 ]

⋃
[π+δ

1
3 ,2π]

δ · h〈ψ, un,δ(x; p)〉
(λ∗ + δ · h− λn,δ(p))(λ∗ − λn,δ(p))

un,δ(x; p)dp
∥∥∥2

H1(Ωδ)

=
∑
n=1,2

∫
[0,π−δ

1
3 ]

⋃
[π+δ

1
3 ,2π]

(1 + λn,δ(p))
∣∣∣ δ · h〈ψ, un,δ(x; p)〉
(λ∗ + δ · h− λn,δ(p))(λ∗ − λn,δ(p))

∣∣∣2dp
. δ

2
3 |h|2

∑
n=1,2

∫
[0,π−δ

1
3 ]

⋃
[π+δ

1
3 ,2π]

|〈ψ, un,δ(x; p)〉|2dp

. δ
2
3 |h|2

∑
n=1,2

∫
[0,π−δ

1
3 ]

⋃
[π+δ

1
3 ,2π]

‖ψ‖2

H̃−
1
2 (Γ)

dp . δ
2
3 |h|2‖ψ‖2

H̃−
1
2 (Γ)

(F.6)
where the second equality is derived from (2.16). Thus we have

‖ (Tpropδ (λ∗ + δ · h)− Tpropδ (λ∗))ψ‖H 1
2 (Γ)

. ‖v‖H1(Ωδ) . δ
1
3 |h|‖ψ‖

H̃−
1
2 (Γ)

,

whence (F.5) follows.
We then show that

‖Tpropδ (λ∗)− Tprop0,δ ‖B(H̃−
1
2 (Γ),H

1
2 (Γ))

. δ
1
3 |h|. (F.7)

By a similar perturbation argument, as we did in the proof of Theorem 3.6, there holds

|λn,δ(p)− λn(p)| = O(δ), ‖un,δ(·; p)− un(·; p)‖
H

1
2 (Γ)

= O(δ),

uniformly for n = 1, 2 and p ∈ (0, π)
⋃

(π, 2π). Again, for each φ ∈ H̃−
1
2 (Γ), let u :=

Tpropδ (λ∗)φ− Tprop0,δ φ and extend u as a function defined on Ωδ. Then we have

u =
1

2π

∑
n=1,2

∫
[0,π−δ

1
3 ]

⋃
[π+δ

1
3 ,2π]

〈ψ, un,δ(x; p)〉un,δ(x; p)

λ∗ − λn,δ(p)
− 〈ψ, un,δ(x; p)〉un(x; p)

λ∗ − λn,δ(p)
dp

+
1

2π

∑
n=1,2

∫
[0,π−δ

1
3 ]

⋃
[π+δ

1
3 ,2π]

〈ψ, un,δ(x; p)〉un(x; p)

λ∗ − λn,δ(p)
− 〈ψ, un(x; p)〉un(x; p)

λ∗ − λn,δ(p)
dp

+
1

2π

∑
n=1,2

∫
[0,π−δ

1
3 ]

⋃
[π+δ

1
3 ,2π]

〈ψ, un(x; p)〉un(x; p)

λ∗ − λn,δ(p)
− 〈ψ, un(x; p)〉un(x; p)

λ∗ − λn(p)
dp.

By applying the same method of estimation for each term at the right-hand side above as in
(F.6), we arrive at (F.7).

In conclusion, with (F.4), (F.5) and (F.7), we deduce (F.3).

Step 4. We show that

lim
δ→0
‖Tevanδ (λ∗ + δ · h)− Tevan0 ‖

B(H̃−
1
2 (Γ),H

1
2 (Γ))

= 0. (F.8)

To this end, define the following auxiliary operators in B(H̃−
1
2 (Γ), H

1
2 (Γ)) for p ∈ [0, 2π]

Tevanδ (λ; p) :=
∑
n≥3

〈·, un,δ(x; p)〉
λ− λn,δ(p)

un,δ(x; p), Tevan0 (λ; p) :=
∑
n≥3

〈·, un(x; p)〉
λ− λn(p)

un(x; p).
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Then we have

Tevanδ (λ) =

∫ 2π

0

Tevanδ (λ; p)dp, Tevan0 (λ) =

∫ 2π

0

Tevan0 (λ; p)dp. (F.9)

We aim to show that (1)Tevanδ (λ∗+δ·h; p) has uniformly bounded norm for every p ∈ [0, 2π] and
δ � 1; (2)Tevanδ (λ∗+δ ·h; p) is a continuous operator-valued function of p; (3)Tevanδ (λ∗+δ ·h; p)
converges to Tevan0 (λ∗; p) in operator norm for almost every p ∈ [0, 2π]. Then (F.8) follows
directly from the dominated convergence theorem. In what follows, after introducing some
notations in Step 5, we shall prove (1), (2), and (3) in Step 6, Step 7, and Step 8 respectively.

Step 5. We fix some notations. Denote Cδ := Ωδ ∩ Y , and the closed subspace Vp,δ of

H1(Cδ) by Vp,δ := span{un,δ(·; p)}n≥3 ⊂ H1(Cδ). Then the trace operator can be defined on

Vp,δ, which is Tr : Vp,δ → H
1
2 (Γ). Moreover, we use M : H̃−

1
2 (Γ) → (Vp,δ)

∗ to represent the
adjoint of Tr, i.e. M := Tr∗. It is clear that the ‖Tr‖ and ‖M‖ is uniformly bounded for
every p ∈ [0, 2π] and δ � 1 since D1,δ and D2,δ are away from Γ.

Step 6. We prove the uniform boundedness of ‖Tevanδ∗
(λ+ δ · h; p)‖ in p. For this purpose,

we define the following sesquilinear form ap,δ(·, ·) on Vp,δ and its associated operator Ap,δ :
Vp,δ → (Vp,δ)

∗ by

ap,δ(u, v) := −
∑
n≥3

λn,δ(p)〈u(x), un,δ(x; p)〉(Vδ,p)∗×Vδ,p · 〈v(x), un,δ(x; p)〉(Vδ,p)∗×Vδ,p ,

ap,δ(u, v) ≡ 〈Ap,δu, v〉(Vδ,p)∗×Vδ,p ,

then the resolvent (λ+ Ap,δ)
−1 can be expanded in its spectral form when it is well-defined

(λ+ Ap,δ)
−1 =

∑
n≥3

1

λ− λn,δ(p)
〈·, un,δ(x; p)〉(Vδ,p)∗×Vδ,pun,δ(x; p).

Thus Tevanδ (λ; p) admits the following factorization:

Tevanδ (λ; p) = Tr ◦ (λ+ Ap,δ)
−1 ◦M. (F.10)

We note that for λ = λ∗+ δ · h with h ∈ J̃ , by (2.16), there exists c > 0, which is independent
of both δ and p, such that

|ap,δ(u, u) + λ〈u, u〉Vδ,p×Vδ,p| ≥ c‖u‖2

for any u ∈ Vp,δ. Thus, by Lax-Milgram theorem, we have ‖(λ + Ap,δ)
−1‖ ≤ c−1. Then the

uniform boundedness of ‖Tevanδ (λ∗ + δ · h; p)‖ follows by using (F.10).

Step 7. We prove the continuity of Tevanδ (λ; p) with respect to p ∈ [0, 2π]. Actually,
the definition of the sesquilinear ap,δ(·, ·) implies that Ap,δ = ∆|Vp,δ . Thus, the operator
e−ipx1Ap,δe

ipx1 = (∇ + ipe1)2|V0,δ is analytic of type (A) in p for each fixed δ, in the sense
that (e−ipx1Ap,δe

ipx1)u ∈ (V0,δ)
∗ is analytic vector-valued function with respect to p for each

u ∈ V0,δ (see Section 2, Chapter VII of [24]). As a consequence, the discussions in the same
chapter show that e−ipx1Ap,δe

ipx1 : V0,δ → (V0,δ)
∗ is analytic. Then, by Theorem 1.3 at p.367

of [24], we derive that e−ipx1(λ + Ap,δ)
−1eipx1 : (V0,δ)

∗ → V0,δ is an analytic operator-valued
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function with respect to p (see the discussions in Chapter VII, [24]). On the other hand, we
can factorize Tevanδ (λ; p) as

Tevanδ (λ; p) = (Tr ◦ eipx1) ◦ (e−ipx1(λ+ Ap,δ)
−1eipx1) ◦ (e−ipx1 ◦M).

Note that all the operators inside the brackets on the right-hand side above have domains
independent of p and are continuous in p. We conclude that Tevanδ (λ; p) is continuous with
respect to p ∈ [0, 2π] for each fixed δ.

Step 8. We prove that Tevanδ (λ∗ + δ · h; p) converges to Tevan0 (λ∗; p) in operator norm for
almost every p ∈ [0, 2π]. To this end, we apply the resolvent identity of (λ+Ap,δ)

−1 to (F.10)
to obtain

Tevanδ (λ∗ + δ · h; p)− Tevanδ (λ∗; p) = −δ · h
(
Tr ◦ (λ∗ + δ · h+ Ap,δ)

−1 ◦ (λ∗ + Ap,δ)
−1 ◦M

)
.

Then the uniform boundedness of operators on the right-hand side above yields

lim
δ→0
‖Tevanδ (λ∗ + δ · h; p)− Tevanδ (λ∗; p)‖B(H̃−

1
2 (Γ),H

1
2 (Γ))

= 0, (F.11)

for each p ∈ [0, 2π]. The desired conclusion follows if we can prove that for almost every
p ∈ [0, 2π],

lim
δ→0
‖Tevanδ (λ∗; p)− Tevan0 (λ∗; p)‖B(H̃−

1
2 (Γ),H

1
2 (Γ))

= 0. (F.12)

The idea for the proof of (F.12) is to express Tevanδ (λ∗; p) as the composition of a sequence of
operators, which all converge in operator norm for all p ∈ [0, 2π] except a finite set. In more

detail, for any ψ ∈ H̃− 1
2 (Γ), we extend the function wδ(x; p) := Tevanδ (λ∗; p)ψ to x ∈ Cδ. Note

that wδ satisfies the following equations

(∆x + λ∗)wδ(x; p) = (f 0
δψ)(x) := ψ(x2)δ̃(x1)−

∑
n=1,2

〈ψ, un,δ(x; p)〉un,δ(x; p) ∈ H−1(Cδ),

∂

∂x2

∣∣∣
Γ±

(wδ(x; p)) = wδ(x; p)
∣∣∣
∂D1,δ

= wδ(x; p)
∣∣∣
∂D2,δ

= 0,

wδ(x; p)(x+ e1; p) = eipwδ(x; p),
∂wδ
∂x1

(x+ e1; p) = eip
∂wδ
∂x1

(x; p).

where δ̃(·) denotes the Dirac delta function. Thus, for p /∈ S(λ∗) := {π} ∪ {p ∈ [0, 2π] :
λ∗ = λen(p) for some integer n} (λen(p) are introduced in (3.4)), we can express wδ(x; p) by the
Green formula

wδ(x; p) =

∫
Cδ

Ge(x, y; p, λ∗)(f
0
δψ)(y)dy

+

∫
∂D

Ge(x, y + z1 − δe1; p, λ∗)ϕ1,δ(y)dσ(y) +

∫
∂D

Ge(x, y + z2 + δe1; p, λ∗)ϕ2,δ(y)dσ(y),

(F.13)

for some ϕδ = (ϕ1,δ, ϕ2,δ) ∈ H−
1
2 (∂D)×H− 1

2 (∂D). The Dirichlet conditions on ∂D1,δ ∩ ∂D2,δ

require that

Tδ(p, λ∗)ϕδ = −

(∫∂DGe(x+ z1 − δe1, y; p, λ∗)(f
0
δψ)(y)dy

) ∣∣∣
∂D(∫

∂D
Ge(x+ z2 + δe1, y; p, λ∗)(f

0
δψ)(y)dy

) ∣∣∣
∂D

 ,
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where Tδ(p, λ∗) is introduced in (3.7).
We now show that Tδ(p, λ∗) is invertible for any p /∈ S(λ∗) when δ is sufficiently small.

Indeed, since T (p, λ∗) is Fredholm with zero index (by Lemma 3.1) and limδ→0 ‖Tδ(p, λ∗) −
T (p, λ∗)‖ = 0 (by Lemma 3.2), Tδ(p, λ∗) is also Fredholm with zero index. On the other hand,
for each p 6= π, λ∗ is not a characteristic values of Tδ(λ; p) := Tδ(p, λ) (see Corollary 3.9).
Therefore Tδ(p, λ∗) is invertible for p /∈ S(λ∗). As a result, we have the following expression

ϕδ = −T−1
δ (p, λ∗)

(∫∂DGe(x+ z1 − δe1, y; p, λ∗)(f
0
δψ)(y)dy

) ∣∣∣
∂D(∫

∂D
Ge(x+ z2 + δe1, y; p, λ∗)(f

0
δψ)(y)dy

) ∣∣∣
∂D

 . (F.14)

Moreover limδ→0 ‖T−1
δ (p, λ∗) − T−1(p, λ∗)‖ = 0. By substituting (F.14) into (F.13) and then

taking trace to Γ, we can express Tevanδ (λ∗; p) as the composition of a sequence of operators,
which all converge in operator norm for each p /∈ S(λ∗). Therefore (F.12) holds almost
everywhere for p ∈ [0, 2π].

Step 9. Finally, in view of (F.3), (F.8) and the decomposition (F.2), we have

lim
δ→0
‖Tδ(λ∗ + δ · h)− T0‖B(H̃−

1
2 (Γ),H

1
2 (Γ))

= 0.

Following the same line of proof, it can be shown that

lim
δ→0
‖T−δ(λ∗ + δ · h)− T0‖B(H̃−

1
2 (Γ),H

1
2 (Γ))

= 0.

Combining the above with the results of Step 1 and the estimates of (4.16) and (4.18), we
conclude the proof.
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Mathématiques Pures et Appliquées, 144:17–49, 2020.

[3] Habib Ammari, Brian Fitzpatrick, Erik Hiltunen, and Sanghyeon Yu. Subwavelength
localized modes for acoustic waves in bubbly crystals with a defect. SIAM Journal on
Applied Mathematics, 78, 04 2018.

[4] Habib Ammari, Brian Fitzpatrick, Erik Orvehed Hiltunen, Hyundae Lee, and Sanghyeon
Yu. Honeycomb-lattice minnaert bubbles. SIAM Journal on Mathematical Analysis,
52(6):5441–5466, 2020.

[5] Habib Ammari, Brian Fitzpatrick, Hyeonbae Kang, Matias Ruiz, Sanghyeon Yu, and Hai
Zhang. Mathematical and computational methods in photonics and phononics, volume
235. American Mathematical Society, 2018.

46



[6] Habib Ammari, Erik Hiltunen, and Sanghyeon Yu. Subwavelength guided modes for
acoustic waves in bubbly crystals with a line defect. Journal of the European Mathematical
Society, 24(7):2279–2313, 2022.

[7] Maxence Cassier and Michael I Weinstein. High contrast elliptic operators in honeycomb
structures. Multiscale Modeling & Simulation, 19:1784–1856, 12 2021.

[8] Philippe Clément and Ben de Pagter. Some remarks on the banach space valued hilbert
transform. Indagationes Mathematicae, 2(4):453–460, 1991.

[9] Carlos Conca, Jerome A. Planchard, and Muthusamy Vanninathan. Fluids And Periodic
Structures. 1995.

[10] Alexis Drouot. The bulk-edge correspondence for continuous honeycomb lattices. Com-
munications in Partial Differential Equations, 44:1406 – 1430, 2019.

[11] Alexis Drouot, Charles L Fefferman, and Michael I Weinstein. Defect modes for dislocated
periodic media. Communications in Mathematical Physics, 377(3):1637–1680, 2020.

[12] Alexis Drouot and Micheal I Weinstein. Edge states and the valley hall effect. Advances
in Mathematics, 368:107142, 2020.

[13] Charles Fefferman, J Lee-Thorp, and Michael I Weinstein. Topologically protected states
in one-dimensional systems, volume 247. American Mathematical Society, 2017.

[14] Charles Fefferman and Michael I Weinstein. Honeycomb lattice potentials and dirac
points. Journal of the American Mathematical Society, 25(4):1169–1220, 2012.

[15] Charles L Fefferman, James P Lee-Thorp, and Michael I Weinstein. Edge states in
honeycomb structures. Annals of PDE, 2(2):1–80, 2016.

[16] Alexander Figotin and Abel Klein. Localization of electromagnetic and acoustic waves in
random media. lattice models. Journal of statistical physics, 76(3):985–1003, 1994.

[17] Alexander Figotin and Abel Klein. Localization of classical waves i: Acoustic waves.
Communications in mathematical physics, 180(2):439–482, 1996.

[18] Alexander Figotin and Abel Klein. Localization of classical waves ii: Electromagnetic
waves. Communications in mathematical physics, 184(2):411–441, 1997.

[19] Alexander Figotin and Abel Klein. Localized classical waves created by defects. Journal
of statistical physics, 86(1):165–177, 1997.

[20] Alexander Figotin and Abel Klein. Localization of light in lossless inhomogeneous di-
electrics. Journal of Optical Society of America A, 15(5):1423–1435, 1998.

[21] Alexander Figotin and Abel Klein. Midgap defect modes in dielectric and acoustic media.
SIAM J. APPL. MATH., 58(6):1748–1773, 1998.

[22] Sonia Fliss and Patrick Joly. Solutions of the time-harmonic wave equation in periodic
waveguides: asymptotic behaviour and radiation condition. Archive for Rational Me-
chanics and Analysis, 219(1):349–386, 2016.

47



[23] Vu Hoang and Maria Radosz. Absence of bound states for waveguides in 2d periodic
structures. Journal of Mathematical Physics, 55876134:55–33506, 03 2014.

[24] Tosio Kato. Perturbation theory for linear operators, volume 132. Springer Science &
Business Media, 2013.

[25] Peter Kuchment. An overview of periodic elliptic operators. Bulletin of the American
Mathematical Society, 53(3):343–414, 2016.

[26] Peter Kuchment and Beng Seong Ong. On guided electromagnetic waves in photonic
crystal waveguides. Operator theory and its applications, 339, 12 2009.

[27] James P Lee-Thorp, Michael I Weinstein, and Yi Zhu. Elliptic operators with honeycomb
symmetry: Dirac points, edge states and applications to photonic graphene. Archive for
Rational Mechanics and Analysis, 232(1):1–63, 2019.

[28] Wei Li, Junshan Lin, and Hai Zhang. Dirac points for the honeycomb lattice with im-
penetrable obstacles. SIAM Journal on Applied Mathematics, to appear, 2023.

[29] Junshan Lin and Hai Zhang. Mathematical theory for topological photonic materials in
one dimension. Journal of Physics A: Mathematical and Theoretical, 55 495203, 2022.

[30] Tomoki Ozawa, Hannah M Price, Alberto Amo, Nathan Goldman, Mohammad Hafezi,
Ling Lu, Mikael C Rechtsman, David Schuster, Jonathan Simon, Oded Zilberberg, et al.
Topological photonics. Reviews of Modern Physics, 91(1):015006, 2019.

[31] Wenjun Qiu, Zheng Wang, and Marin Soljačić. Broadband circulators based on directional
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