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Abstract: This work is concerned with inverse design of the grating metasurface over hyperbolic8

metamaterials (HMMs) in order to enhance spontaneous emission (SE). We formulate the design9

problem as a PDE-constrained optimization problem and employ the gradient descent method to10

solve the underlying optimization problem. The adjoint-state method is applied to compute the11

gradient of the objective function efficiently. Computational results show that the SE efficiency12

of the optical structure with the optimized metasurface increases by 600% in the near field. In13

particular, an optimal double-slot metasurface obtained by this design method enhances the SE14

intensity by a factor of over 100 in the observation region.15

1. Introduction16

Spontaneous emission (SE) arises from the interplay between a light emitter (such as quantum17

dot) and its surrounding environment, and the control of SE plays an important role on the18

functionalities of many optoelectronics devices [1]. Conventional approaches of using photonic19

crystals or nanocavities to modify the dielectric environment and manipulate the optical modes20

can successfully induce the so-called Purcell effect and collect the emitted photon at a given21

quantum state, but these strategies require to excite the resonances of photonic crystals or cavities,22

which imposes a restriction on the spectral width of the emitter [2–6].23

The development of metamaterials has provided an alternative approach to control the SE24

within a much broader bandwidth. In particular, the hyperbolic metamaterials (HMMs) can be25

employed to either reduce or enhance the extraction efficiency of SE [7–12]. HMMs are a class26

of uniaxial anisotropic electromagnetic materials for which the axial principle component of27

their relative permittivity or permeability tensors attain opposite sign of the other two principal28

components. Such metamaterials can be realized, for instance, by alternating metal-dielectric29

layers or by embedding metallic wire array in a dielectric matrix by restricting free-electron30

motion to certain directions [7, 8]. More recently, hexagonal boron nitride (hBN), 𝛼-phase31

molybdenum trioxide (𝛼-Mo𝑂3), 𝛼-phase vanadium pentoxide (𝛼-𝑉2𝑂5) and a few others have32

emerged as natural hyperbolic materials that attain opposite signs for the in-plane and out-of-plane33

components of the permittivity tensor [13, 14].34

One of the crucial features in HMMs is its ability to support electromagnetic wave with35

arbitrarily large wave vectors, which is guaranteed by the hyperboloidal isofrequency surface of36

the underlying dispersion relation [15]. When such electromagnetic modes with high momentum37

are excited by a quantum emitter, they can be out-coupled to the free space via a grating38

metasurface so as to enhance extraction efficiency for SE [7,8,11,12]. The outcoupling efficiency39

for several different configurations of gratings have been investigated [7, 8, 11, 12], with different40

shapes or different grating periods. For instance, it has been shown that grating metasurfaces41

with the proper periodic structure can improve the light extraction performance of the quantum42

dots embedded in HMMs by a factor of 20 [8]. However, it is not clear what grating profile43

would yield the highest extraction efficiency. The goal of this work is to investigate the inverse44

design of the 1D grating metasurface such that the out-coupling efficiency for SE is maximized.45



To this end, we formulate the underlying inverse design problem as a PDE-constrained46

optimization problem and develop a gradient descent method to solve the optimization problem.47

The method requires a small number of iterations, where at each iteration, one forward and48

one adjoint-state problem are solved. It is shown that the extraction efficiency of metasurface49

is significantly enhanced with the optimization procedure, which allows for the dramatic50

enhancement of SE for the optical structure as demonstrated by the numerical experiments.51

2. The inverse design problem: formulation and algorithm52

2.1. The mathematical model for optical scattering53

The time-harmonic Maxwell’s equation when a dipole is presented is given by54

∇ × 𝐸 = 𝑖𝜔`𝐻, ∇ × 𝐻 = −𝑖𝜔𝜖𝐸 + 𝐼, (1)

where 𝜖 and ` are the electric permittivity and magnetic permeability, and 𝜔 is the angular55

frequency. 𝐼 := ®𝑝𝛿(𝑟 − 𝑟0) represents the dipole source, in which the polarization vector ®𝑝 lies56

on the 𝑥𝑦 plane. We assume that the electric permittivity attains the form:57

𝜖 =


𝜖𝑥 0 0

0 𝜖𝑦 0

0 0 𝜖𝑧


. (2)

In a homogeneous isotropic medium such as gold or vacuum considered here, there holds58

𝜖𝑥 = 𝜖𝑦 = 𝜖𝑧 , while in HMMs, the axial principle component of the permittivity 𝜖𝑥 attains59

the opposite sign of the other two principal components 𝜖𝑦 and 𝜖𝑧 such that ℜ𝜖𝑥ℜ𝜖𝑦 < 0 and60

ℜ𝜖𝑥ℜ𝜖𝑧 < 0. Under the transverse-magnetic (TM) polarization for the electromagnetic wave61

with62

𝐸 = (𝐸𝑥 , 𝐸𝑦 , 0)𝑇 , 𝐻 = (0, 0, 𝐻𝑧)𝑇 , (3)

the above Maxwell’s equation reduces to the following Helmholtz equation for the 𝑧−component63

of the magnetic field:64

𝜕

𝜕𝑥

(
1
𝜖𝑦

𝜕𝐻𝑧

𝜕𝑥

)
+ 𝜕

𝜕𝑦

(
1
𝜖𝑥

𝜕𝐻𝑧

𝜕𝑦

)
+ 𝑘2𝐻𝑧 = (∇ × 𝐼)𝑧 , (4)

where the wavenumber 𝑘 = 𝜔/𝑐, and 𝑐 is the light speed.65

2.2. Optimization objectives and parameters66

Fig. 1 depicts the setup for the spontaneous emission model. A dipole source is placed under the67

HMM layer, with an Au grating metasurface sitting on top of the HMM layer to out-couple the68

wave modes with high momentum. Our goal is to optimize the profile of the grating metasurface69

such that the out-coupling efficiency is maximized along the emission direction. We set a target70

region 𝐷 above the grating, which is a rectangular area along the emission direction, and use71

the strength of the wave field in 𝐷 to quantify the level of the out-coupling performance for the72

grating metasurface. More precisely, we denote 𝐻𝑧 in equation (4) as 𝑢, and define an energy73

function 𝐽 to quantify the emission efficiency of the optical structure:74

𝐽 =
1
2

∫
𝐷

|𝑢 |2 𝑑𝑥𝑑𝑦. (5)

We use a continuous non-negative function 𝑓 to represent the profile of the one-dimensional75

grating metasurface. Thus the optimal design problem is to solve for an optimal profile function76

𝑓 such that 𝐽 is maximized.77



Fig. 1. The setup for the spontaneous emission model. (a) Grating metasurface. (b)
Hyperbolic metamaterial (HMM) layer. (c) Emission source. (d) Perturbation of the
metasurface profile on top of the HMM.

2.3. Optimization scheme78

We employ the gradient descent method to minimize the functional −𝐽. To this end, at each79

iteration we compute the gradient of 𝐽 with respect to 𝑓 , also known as the shape derivative, and80

update 𝑓 along the gradient direction. To simplify the notations, we rewrite equation (4) as81

𝜕

𝜕𝑥

(
𝛾1

𝜕𝑢

𝜕𝑥

)
+ 𝜕

𝜕𝑦

(
𝛾2

𝜕𝑢

𝜕𝑦

)
+ 𝑘2𝑢 = 𝑔 for (𝑥, 𝑦) ∈ Ω, (6)

where 𝑔 is the source, 𝛾1 = 1/𝜖𝑥 and 𝛾2 = 1/𝜖𝑦 . For any test function 𝑣 with compact support in82

Ω, an integration by parts leads to83 ∫
Ω

𝛾1
𝜕𝑢

𝜕𝑥

𝜕�̄�

𝜕𝑥
+ 𝛾2

𝜕𝑢

𝜕𝑦

𝜕�̄�

𝜕𝑦
− 𝑘2𝑢�̄� 𝑑𝑠 = −

∫
Ω

𝑔�̄� 𝑑𝑠. (7)

In the above, 𝑧 represents the complex conjugate of 𝑧. To derive the gradient of 𝐽 with respect to 𝑓 ,84

we perturb 𝑓 slightly as shown in Fig. 1(d) and denote the new grating profile, the corresponding85

coefficients and the scattered field as 𝑓 𝛿 := 𝑓 + 𝛿 𝑓 , 𝛾 𝛿
𝑖

:= 𝛾𝑖 + 𝛿𝛾𝑖 (𝑖 = 1, 2) and 𝑢𝛿 := 𝑢 + 𝛿𝑢,86

respectively. Subtracting equation (7) from its perturbed one yields87 ∫
Ω

𝛾1
𝜕𝛿𝑢

𝜕𝑥

𝜕�̄�

𝜕𝑥
+ 𝛾2

𝜕𝛿𝑢

𝜕𝑦

𝜕�̄�

𝜕𝑦
− 𝑘2𝛿𝑢�̄� 𝑑𝑠

= −
∫
Ω

𝛿𝛾1
𝜕𝑢𝛿

𝜕𝑥

𝜕�̄�

𝜕𝑥
+ 𝛿𝛾2

𝜕𝑢𝛿

𝜕𝑦

𝜕�̄�

𝜕𝑦
𝑑𝑠.

(8)

Now let us introduce the adjoint-state equation88

𝜕

𝜕𝑥

(
𝛾1

𝜕𝑢∗

𝜕𝑥

)
+ 𝜕

𝜕𝑦

(
𝛾2

𝜕𝑢∗

𝜕𝑦

)
+ 𝑘2𝑢∗ = 𝑢𝜒𝐷 for (𝑥, 𝑦) ∈ Ω, (9)

where 𝜒𝐷 is the characteristic function of 𝐷 such that 𝜒𝐷 = 1 when 𝑥 ∈ 𝐷 and 𝜒𝐷 = 0 otherwise.89

For any test function 𝑣 that is compactly supported in Ω, 𝑢∗ satisfies90 ∫
Ω

𝛾1
𝜕𝑢∗

𝜕𝑥

𝜕�̄�

𝜕𝑥
+ 𝛾2

𝜕𝑢∗

𝜕𝑦

𝜕�̄�

𝜕𝑦
− 𝑘2𝑢∗�̄� 𝑑𝑠 = −

∫
𝐷

𝑢�̄� 𝑑𝑠. (10)



Let 𝑣 = 𝑢∗ in (8) and 𝑣 = 𝛿𝑢 in (10), we arrive at

𝛿𝐽 = 𝐽 ( 𝑓 𝛿) − 𝐽 ( 𝑓 )

= ℜ
∫
𝐷

𝑢𝛿𝑢 𝑑𝑠 +𝑂 ( | |𝛿𝑢 | |2)

= ℜ
∫
Ω

𝛿𝛾1
𝜕𝑢𝛿

𝜕𝑥

𝜕𝑢∗

𝜕𝑥
+ 𝛿𝛾2

𝜕𝑢𝛿

𝜕𝑦

𝜕𝑢∗

𝜕𝑦
𝑑𝑠 +𝑂 ( | |𝛿𝑢 | |2), (11)

where ℜ denotes the real part of a complex function. Let 𝐿 be the width of the grating so that 𝑓

is supported in the interval [0, 𝐿] and [𝑈] 𝑓 be the jump of the function 𝑈 across the interface,
i.e.

[𝑈 (𝑥, 𝑦)] 𝑓 := lim
ℎ→0+

𝑈 (𝑥, 𝑦 + ℎ) −𝑈 (𝑥, 𝑦 − ℎ) for 𝑦 = 𝑓 (𝑥).

Then one can rewrite (11) as an integral on [0, 𝐿]:91

𝛿𝐽 = −
∫ 𝐿

0
ℜ

[
𝛾

(
𝜕𝑢𝛿

𝜕𝑥

𝜕𝑢∗

𝜕𝑥
+ 𝜕𝑢𝛿

𝜕𝑦

𝜕𝑢∗

𝜕𝑦

)]
𝑓

𝛿 𝑓 𝑑𝑥 +𝑂 ( | |𝛿𝑢 | |2), (12)

where 𝛾 = 𝛾1 = 𝛾2 near the interface 𝑓 since the Au grating is isotropic. Therefore, to increase92

the objective function, we make use of the fact that 𝑢𝛿 ≈ 𝑢 and choose 𝛿 𝑓 to be93

𝛿 𝑓 = ℎ

(
−ℜ

[
𝛾

(
𝜕𝑢

𝜕𝑥

𝜕𝑢∗

𝜕𝑥
+ 𝜕𝑢

𝜕𝑦

𝜕𝑢∗

𝜕𝑦

)] )
, (13)

so that 𝛿𝐽 > 0. In the above, ℎ is the step size at each iteration.94

3. Numerical experiments95

3.1. Parameters and numerical solver96

3.1.1. Setup for numerical simulations and model parameters97

The mathematical model is solved over a finitely truncated domain shown in Fig. 2 and the98

specifications of the experimental model are given in Table 1. The entire region is enclosed by a99

perfect matched layer (PML) to eliminate the artificial reflection from the boundary [16]. We100

consider an hBN HMM layer with an Au grating deposited over it. A dipole source directing101

along the vertical direction 𝑦 is placed below the hBN layer. The region 𝐷 is located in the102

near field with a distance of 2`m above the metasurface (cf. Fig. 2 and Table 1). To quantify103

the emission efficiency of the structure in the far field, we choose the region Θ which is 7`m104

above the metasurface (cf. Fig. 2 and Table 1). We use the scattering intensity (5) defined over105

near-field region 𝐷 instead of the far-field region Θ to perform the optimization, because the106

optical wave in the near field is more sensitive to the variation of the grating profile. For clarity107

we rename 𝐽 in (5) as 𝐽𝐷 and define 𝐽Θ with 𝐷 replaced by Θ in (5) to represent the scattering108

intensity in the far field. By denoting 𝐽0
𝐷

and 𝐽0
Θ

as the reference scattering intensity values for a109

bare hBN layer, we use the relative ratios 𝐽𝐷/𝐽0
𝐷

and 𝐽Θ/𝐽0
Θ

to quantify the SE enhancement in110

𝐷 and Θ respectively at the presence of grating.111

3.1.2. Numerical solver and regularization112

We evaluate the gradient (13) of the objective function 𝐽𝐷 by solving the scattering problem (6)113

and the adjoint equation (9) using the finite element method (FEM). In order to fully resolve 𝑢114

and 𝑢∗ in the near field, the FEM mesh near the metasurface, the HMM and the emission source115

is much finer than the mesh in other regions. During the optimization, the profile function 𝑓 may116

become highly oscillatory or obtain sharp corners at certain iterations. We regularize 𝑓 at each117

iteration by using the truncated Fourier series expansion.118



Fig. 2. The setup for computer simulation. (a) AU grating metasurface. (b) Hyperbolic
metamaterial layer. (c) The dipole source. In (d) and (e), 𝑙𝑥 and 𝑙𝑦 denote the horizontal
and vertical distances of a point (𝑥, 𝑦) in the absorbing layer to the inner boundary of
the computational domain respectively.

𝐿𝑥 (`m) 𝐿𝑦 (`m) 𝐷𝑠 (`m) 𝜖𝑥 𝜖𝑦

Absorbing layer 2 1 + 12𝑙2𝑥𝑖/𝑘 1 + 12𝑙2𝑦𝑖/𝑘

HMM (hbN)1 8 0.1 0.01 -8.2085+0.4571i 2.7544+0.0004i

Grating (Au) 8 𝑓 0.11 -1637.4700+541.0360i -1637.4700+541.0360i

Region 𝐷 4 1 2 1 1

Region Θ 4 1 7 1 1

Table 1. Parameter specifications for the model in Fig. 2. 𝐿𝑥 and 𝐿𝑦 denote the length
and width of each region. 𝐷𝑠 is the distance between the objects and the emission
source. 𝜖𝑥 and 𝜖𝑦 are permittivity values of the materials at specified frequency.

3.2. Numerical experiments119

In this section, we present three numerical experiments to illustrate the performance of the120

optimization algorithm. The wavelength in the first two experiments is set as 6.85 µm. In the last121

experiment, the optimization process is implemented over a range of frequencies.122

3.2.1. Periodic structure as the initial guess123

We use a periodic grating as the initial metasurface, with a period of 8/9 µm. The width of the124

Au cell is half of the period with a thickness of 0.08 µm. The corresponding grating profile 𝑓 is125

given by126

𝑓 (𝑥) = 0.04 + 0.04sign
(
cos

(
16
9
𝜋𝑥

))
, 𝑥 ∈ [0, 8] . (14)

The optimization results and corresponding scattered field are collected in Table 2 and Fig. 3.127

It is observed that after four iterations, we obtain the optimized 𝑓 , through which the ratio128

𝐽𝐷/𝐽0
𝐷

increases from 6 at the initial stage to 38 with the optimized grating. In other words,129

the optimization process increases the emission efficiency in the near field by more than 600%.130

Meanwhile, in the far field, 𝐽Θ/𝐽0
Θ

increases from 5 to 12, as shown in Fig. 3(a). Therefore,131

although we utilize the near-field scattering intensity to compute the shape derivative, the132



0 8

0

0.2/
/

Fig. 3. (a) The growth of 𝐽𝐷/𝐽0
𝐷

and 𝐽Θ/𝐽0
Θ

during the iteration. (b) The real part of
the scattered field with the initial structure. (c) The real part of the scattered field with
the optimized structure. To illustrate the enhancement of scattered wave in the far field,
we set the range of the colorbar from -1 to 1, noting that the wave in the near field is
much stronger. The same colorbar is used in subsequent figures. (d) Initial structure vs
the optimized structure.

out-coupling efficiency of the metasurface for SE is significantly enhanced in both near and far133

fields.134

𝐽𝐷/𝐽0
𝐷

𝐽Θ/𝐽0
Θ

ℎ

Initial value 5.4508 0.9370

Step 1 7.1902 2.3161 0.1000

Step 2 29.3840 10.5830 0.0650

Step 3 30.4933 11.1838 0.0050

Step 4 34.7516 11.3652 0.0030

Final 37.9432 12.2424

Table 2. Optimization based on the periodic initial structure.

3.2.2. Flat metasurface as the initial guess135

We use a flat Au film as the initial metasurface in this experiment. In other words, 𝑓 is a constant136

function given by 𝑓 (𝑥) ≡ 0.08, 𝑥 ∈ [0, 8]. The corresponding 𝐽𝐷 and 𝐽Θ are close to zero137

because the Au film does not couple any wave modes generated by the HMM layer, as shown in138

Fig. 4. The optimization algorithm performs four iterations. It is observed that 𝐽𝐷/𝐽0
𝐷

reaches139

160 and 𝐽Θ/𝐽0
Θ

reaches 50 (cf. Table 3), which implies that the metasurface obtained by the140

optimization algorithm yields a high SE efficiency. It should be noted that significant changes of141

𝐽𝐷 and 𝐽Θ occur at step 3. This is due to the appearance of two tiny holes in the middle of the142

metasurface at this iteration (cf. Fig. 4(d)). This indicates that some small holes in the grating143

structure may lead to a significant enhancement of SE efficiency. We explore this fact in the next144

experiment.145
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Fig. 4. (a) The growth of 𝐽𝐷/𝐽0
𝐷

and 𝐽Θ/𝐽0
Θ

during the iteration. (b) The scattered
field for the initial structure. (c) The scattered field for the optimized structure. (d)
Initial structure vs the optimized structure.

𝐽𝐷/𝐽0
𝐷

𝐽Θ/𝐽0
Θ

ℎ

Initial value 0.1298 0.1056

Step 1 0.1443 0.0974 0.30000

Step 2 0.1677 0.0859 0.30000

Step 3 158.8009 44.5984 0.30000

Step 4 161.7653 50.7434 0.00037

Table 3. Optimization based on the flat metasurface

3.2.3. Double-slot grating metasurface146

Based on the observation in the previous numerical experiment, we use the optimization algorithm147

to construct a double-slot metasurface to enhance the emission efficiency. We denote the width148

of the middle Au cell and the slot by 𝛼 and 𝛽 respectively (cf. Fig. 5(a)). We take the flat metal149

film as an initial guess and update 𝛼 and 𝛽 to maximize 𝐽𝐷 .150

Table 4 and Fig. 5 show that the optimization algorithm yields double-slot gratings with high151

SE efficiency at all test wavelengths. These double-slot structures allow the wave to focus on the152

region 𝐷. However, when the incident wavelength is short (Fig. 5(b)-(d)), the focusing effect153

is less significant. A possible solution is to increase the number of slots and allow each slot to154

change independently.155

4. Conclusion156

In this work, we propose an optimal design method for the grating metasurface to enhance the157

SE of HMMs. This method optimizes the profile of the metasurface using gradient descent via158

the adjoint-state method. Numerical simulations indicate that the Au grating with a periodic159

structure increases the SE efficiency by 600%. Moreover, a class of double-slot metasurfaces160

optimized by this method achieves a significant SE performance over multiple wavelengths. The161

method can be extended to optimize the metasurfaces in three dimensions. Another avenue to162

enhance the SE is to combine our algorithm with topology optimization [18] by optimizing both163



αβ

Fig. 5. The scattered field with the optimal double-slot metasurface for different
wavelengths. (a) the double-slot structure with the middle Au cell width 𝛼 and slot
width 𝛽. (b)-(h) Scattered field of the optimized structure for different wavelengths.

_ (`m) 𝛼 (nm) 𝛽 (nm) 𝐽𝐷/𝐽0
𝐷

𝐽Θ/𝐽0
Θ

5.88 270 30 64.5569 59.4256

6.17 280 20 81.1792 30.2575

6.49 270 30 97.5710 38.7869

6.85 230 45 139.5458 44.4297

7.25 230 45 175.8272 47.6854

7690 220 50 191.1147 60.6277

8.20 230 45 204.1575 67.5201

Table 4. Performance of the double-slot structures.

the profile and topology of the metasurfaces. These will be reported elsewhere in the near future.164

Acknowledgments165

We would like to thank Siyuan Dai in Department of Mechanical Engineering at Auburn166

University for bringing this problem to our attention. The work of Gagn Bao and Jun Lai were167

supported in part by the Key Project of Joint Funds for Regional Innovation and Development168

(No. U21A20425) and a Key Laboratory of Zhejiang Province. Jun Lai was also supported by169

the "Xiaomi Young Scholars" program from Xiaomi Foundation. The work of Junshan Lin was170

partially supported by the NSF grant DMS-2011148.171

Data Availability Statement172

The data that support the findings of this study are available from the corresponding author upon173

reasonable request.174



Disclosures175

The authors declare no conflicts of interest.176

References177

1. T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous178

emission source using plasmonic nanoantennas,” Nat. communications 6, 7788 (2015).179

2. S. Fan, P. R. Villeneuve, J. Joannopoulos, and E. Schubert, “High extraction efficiency of spontaneous emission from180

slabs of photonic crystals,” Phys. review letters 78, 3294 (1997).181

3. P. Lodahl, A. Floris van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling182

the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature 430, 654–657 (2004).183

4. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat.184

photonics 1, 449–458 (2007).185

5. K. J. Russell, T.-L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,”186

Nat. Photonics 6, 459–462 (2012).187

6. T. Tumkur, G. Zhu, P. Black, Y. A. Barnakov, C. Bonner, and M. Noginov, “Control of spontaneous emission in a188

volume of functionalized hyperbolic metamaterial,” Appl. Phys. Lett. 99, 151115 (2011).189

7. L. Ferrari, D. Lu, D. Lepage, and Z. Liu, “Enhanced spontaneous emission inside hyperbolic metamaterials,” Opt.190

express 22, 4301–4306 (2014).191

8. T. Galfsky, H. Krishnamoorthy, W. Newman, E. Narimanov, Z. Jacob, and V. Menon, “Active hyperbolic metamaterials:192

enhanced spontaneous emission and light extraction,” Optica 2, 62–65 (2015).193

9. M. Noginov, H. Li, Y. A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. Bonner, M. Mayy, Z. Jacob, and E. Narimanov,194

“Controlling spontaneous emission with metamaterials,” Opt. letters 35, 1863–1865 (2010).195

10. D. Lu, J. J. Kan, E. E. Fullerton, and Z. Liu, “Enhancing spontaneous emission rates of molecules using nanopatterned196

multilayer hyperbolic metamaterials,” Nat. nanotechnology 9, 48–53 (2014).197

11. K. Sreekanth, T. Biaglow, and G. Strangi, “Directional spontaneous emission enhancement in hyperbolic metamateri-198

als,” J. Appl. Phys. 114, 134306 (2013).199

12. K. V. Sreekanth, K. H. Krishna, A. De Luca, and G. Strangi, “Large spontaneous emission rate enhancement in200

grating coupled hyperbolic metamaterials,” Sci. reports 4, 1–7 (2014).201

13. J. D. Caldwell, I. Aharonovich, G. Cassabois, J. H. Edgar, B. Gil, and D. Basov, “Photonics with hexagonal boron202

nitride,” Nat. Rev. Mater. 4, 552–567 (2019).203

14. M. Chen, X. Lin, T. H. Dinh, Z. Zheng, J. Shen, Q. Ma, H. Chen, P. Jarillo-Herrero, and S. Dai, “Configurable204

phonon polaritons in twisted 𝛼-moo3,” Nat. materials 19, 1307–1311 (2020).205

15. P. Huo, S. Zhang, Y. Liang, Y. Lu, and T. Xu, “Hyperbolic metamaterials and metasurfaces: fundamentals and206

applications,” Adv. Opt. Mater. 7, 1801616 (2019).207

16. J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. computational physics208

114, 185–200 (1994).209

17. P. Li, I. Dolado, F. Alfaro-Mozaz, A. Y. Nikitin, F. Casanova, L. Hueso, S. Vélez, and R. Hillenbrand, “Optical210

nanoimaging of hyperbolic surface polaritons at the edges of van der waals materials,” Nano letters 17, 228–235211

(2017).212

18. Y. Deng, Adjoint Topology Optimization Theory for Nano-Optics (Springer Singapore, 2022).213


