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1. Introduction

Photonic crystals (PCs) are periodic structures with dielectric or metallic
materials. They possess band gaps so that the propagation of light through
the crystal is prohibited at specific frequencies. This property allows for
designs of many optical devices with a wide range of applications, such as
filters, optical communications, lasers and microwaves [18]. By the Floquet-
Bloch theory [22], the spectral problem related to band structures can be
formulated as an eigenvalue problem of the Maxwell’s equation with periodic
boundary conditions in the fundamental cell.

For non-dispersive media where the permittivity and permeability are
independent of the frequency, the eigenvalue problems are linear. Many
successful numerical approaches have been proposed, including the plane
wave method, the finite-difference time-domain method, the finite element
method, the order-N method, the transfer-matrix method, etc [1, 8, 9, 14, 26,
27, 34]. In contrast, dispersive media (with frequency dependent permittivity
or permeability) lead to nonlinear eigenvalue problems in general. As such
the computation of the band structure is much more challenging. Existing
numerical methods for nonlinear eigenvalue problems are mostly based on the
Newton’s iteration [28], linearization [24] or extensions of the techniques for
linear problems [29, 32]. These numerical approaches often require accurate
initial guesses of the eigenvalues and eigenvectors, which are not available
in general. Furthermore, the convergence analysis of the algorithms is very
challenging due to the nonlinearity of the problem. We also refer the readers
to [23], which formulates a new stabilized quadratic eigenvalue problem to
compute a particular selection of the electromagnetic Bloch variety. The
discretization for the 3D Maxwell’s equation brings additional difficulty to
the eigenvalue computation due to the large degree of freedom (typically in
the order of million). Few numerical results exist for the band structure of
the dispersive photonic crystals in 3D.

In this paper, we propose a finite element method for band structure
calculations of photonic crystals in 3D. Following the idea in [33, 34], we
transform the problem into the eigenvalue problem of a holomorphic op-
erator function, whose values are solution operators of the parameterized
Maxwell’s equations. A mixed formulation for the Maxwell’s equations is
used to enforce the divergence-free condition and discretized by the Nédélec
edge elements. Based on the well-posedness of a related source problem [5],
we show that the operator function is of Fredholm type with index zero.
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Employing the abstract approximation theory for holomorphic Fredholm op-
erator functions [19, 20] and the finite element theory for Maxwell’s equa-
tions, we prove the convergence of discrete eigenvalues of the holomorphic
operator function. Finally, the spectral indicator method (SIM) is applied to
practically calculate the eigenvalues. The SIM extends the ideas in [15, 16]
for the generalized eigenvalues of non-Hermitian matrices and is particularly
effective for computing eigenvalues of a holomorphic operator function.

The current paper is a non-trivial continuation of [34] in several aspects.
First, [34] only deals with the 2D case - a nonlinear eigenvalue problem of
the Helmholtz equation, while the current paper deals with the 3D case - a
nonlinear eigenvalue problem of the Maxwell’s equations. Second, only the
TE case is analyzed in [34]. In this paper, a different technique is used and
the convergence is proved directly for Maxwell’s equations. Third, the 3D
numerical examples are way more complicated and there exist only a few ex-
amples in literature including the engineering journals. We note that, in the
context of finite elements, the above approach has been applied successfully
to solve several nonlinear eigenvalue problems of partial differential equations
[12, 33].

The current study leads to a convergent finite element approximation for
the band structure calculation of 3D dispersive photonic crystals with gen-
eral frequency-dependent permittivities. This numerical approach is different
from the classical finite element theory for linear eigenvalue problems (see,
e.g., [2, 4, 30]). The effectiveness of the proposed method is validated by
the 3D numerical examples, which are among the very few existing results
in literature. The rest of the paper is arranged as follows. In Section 2,
we formulate the underlying eigenvalue problem of the Maxwell’s systems in
mixed form over appropriate functional spaces and write the primal problem
as the eigenvalue problem of a holomorphic Fredholm operator function of
index zero. Some related theoretical results and the discrete finite element
spaces in [5, 11] are recalled in Section 3. The approximation results for the
nonlinear operator and the convergence of eigenvalues are proved using the
abstract approximation theory of [19, 20]. In Section 4, we write the dis-
crete problem in matrix form and present the SIM-B algorithm to compute
the eigenvalues. Finally, numerical examples are presented in Section 5 to
illustrate the efficacy of the proposed method. The paper is concluded with
some discussions in Section 6.
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2. Mathematical Model

We start with the spectral problem for the Maxwell’s equations for disper-
sive photonic crystals in R3. For simplicity, the medium is assumed to have
unit periodicity on a cubic lattice. Let Z = {0,±1,±2, · · · } and Λ = Z3.
We define the periodic domain as the quotient space D := R3/Λ and let
D0 = (0, 1)3 be the reference cell.

Let Ω be a compact set over the complex plane C. For ω ∈ Ω, we consider
the nonlinear Maxwell’s eigenvalue problem

∇×
(

1

ϵ(x, ω)
∇×H

)
= ω2H in D,

∇ ·H = 0 in D,

(1)

where H is the magnetic field and ϵ(x, ω) is the electric permittivity. ϵ(x, ω)
depends on the frequency ω and is a periodic function such that

ϵ(x+ n, ω) = ϵ(x, ω), ∀x ∈ R3, n ∈ Λ.

We assume that ϵ(x, ω) is holomorphic in ω and its real part ℜϵ > 0. Further-
more, for a fixed ω ∈ Ω, ϵω(x) := ϵ(x, ω) is piecewise constant and uniformly
bounded away from zero (see Section 2 of [5]). If there exist some ω and
nontrivial H satisfying (1), (ω,H) is called an eigenpair of (1).

Due to the Bloch theory, one seeks for the solutions (ω,H) of (1) such
that H is quasi-periodic, i.e.,

H(x) = eiα·xu(x) (2)

for some periodic function u in x. Let α = (α1, α2, α3)
T ∈ R3 be a vector in

the first Brillouin zone K = [−π, π]3 (see Fig. 1). We introduce the following
shifted differential operator:

∇α = ∇+ iαI,

where I is the identity operator. For a given α ∈ K, it follows from (1) and
(2) that

∇α ×
(

1

ϵ(x, ω)
∇α × u

)
= ω2u in D0,

∇α · u = 0 in D0.

(3)
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Figure 1: Brillouin zone K.

Now we define several Sobolev spaces of periodic functions. Let L2(D0) =
L2(D0)

3 and

Hp(curl;D0) := {g ∈ L2(D0) : ∇× g ∈ L2(D0) and g periodic in x},
Hp(div;D0) := {g ∈ L2(D0) : ∇ · g ∈ L2(D0) and g periodic in x},

H1
p (D0) := {f ∈ L2(D0) : ∇f ∈ L2(D0) and f periodic in x}.

We use following mixed formulation for (3): find (ω,u, p) ∈ Ω×Hp(curl;D0)×
H1

p (D0) such that

a(u,v) + b(p,v) = ω2(u,v), ∀v ∈ Hp(curl;D0),

b(q,u) = 0, ∀q ∈ H1
p (D0),

(4)

where

a(u,v) =

∫
D0

1

ϵ(x, ω)
(∇α × u) · (∇α × v)dx, (5)

b(p,v) =

∫
D0

∇αp · vdx, (6)

(u,v) =

∫
D0

u · vdx. (7)
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Correspondingly, the source problem associated with (4) for a given f ∈
L2(D0) is to find (u, p) ∈ Hp(curl;D0)×H1

p (D0) such that

a(u,v) + b(p,v) = (f ,v), ∀v ∈ Hp(curl;D0),

b(q,u) = 0, ∀q ∈ H1
p (D0).

(8)

To analyze (8), we introduce the space

K := {v ∈ Hp(curl;D0) : b(q,v) = 0 ∀q ∈ H1
p (D0)}.

We denote by ∥ · ∥ the L2(D0) (or L2(D0)) norm. For a Sobolev space H,
we denote its norm by ∥ · ∥H and its semi-norm by | · |H. Let C > 0 be a
generic constant. The well-posedness of (8) was analyzed in [5, 11]. The
following lemma is from [11] (Theorem 3.1 therein). Note that the case of
α ̸= (0, 0, 0)T with standard boundary conditions was studied in [21].

Lemma 1. Let α ∈ K with α ̸= (0, 0, 0)T . Given u ∈ L2(D0), there exist
unique functions w ∈ (H1

p (D0))
3 and ϕ ∈ H1

p (D0) satisfying

u =∇α ×w +∇αϕ with ∇α ·w = 0,

∥w∥1 + ∥ϕ∥1 ≤ C∥u∥.

Let u and p be the solutions of (8). Then it can be shown that

∥u∥1 + ∥p∥1 ≤ C∥f∥. (9)

Furthermore, for a fixed ω ∈ Ω, there exists a linear operator Tω such that,
for f ∈ L2(D0),

Tωf = u,

where u is the first component of the solution of (8). The readers are
referred to [5, 11] for the detailed proof. Note that Tω is a compact op-
erator since the embedding of Hp(curl;D0) ∩ Hp(div;D0) ⊂ H1

p (D0)
3 is

compact (Lemma 2 in [5]). Consequently, we obtain an operator function
T (ω) : Ω → L(L2(D0),L

2(D0)) such that T (ω) := Tω.
From the above discussions, we see that (4) is equivalent to the eigenvalue

problem of the operator function T :

T (ω)(ω2u) = u ω ∈ Ω.
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Define a nonlinear operator function F : Ω → L(L2(D0),L
2(D0)) by

F (ω) = T (ω)− 1

ω2
I ω ∈ Ω. (10)

It is clear that ω is an eigenvalue of (4) if and only if ω is an eigenvalue of the
operator function F , i.e., there exists u such that F (ω)u = 0. The following
lemma shows that F is a holomorphic operator function.

Lemma 2. The operator function T : Ω → L(L2(D0),L
2(D0)) is holomor-

phic.

Proof. For simplicity, we omit the x and write ϵ(ω) for ϵ(x, ω). Let ω ∈ Ω
and δω be small enough such that ω + δω ∈ Ω. Since ϵ(ω) is holomorphic in
Ω, one has that

ϵ(ω + δω)− ϵ(ω) = ϵ′(ω)(δω) + o(|δω|). (11)

For a f ∈ L2(D0), let u := T (ω)f , i.e., u ∈ K is such that∫
D0

1

ϵ(ω)
∇α × u · ∇α × vdx = (f ,v), ∀v ∈ K

Let w := T (ω + δω)f , i.e., w ∈ K is such that∫
D0

1

ϵ(ω + δω)
∇α ×w · ∇α × vdx = (f ,v) ∀v ∈ K.

Then ∫
D0

(
1

ϵ(ω)
∇α × u− 1

ϵ(ω + δω)
∇α ×w

)
· ∇α × vdx = 0.

Due to (11), we have that, for all v ∈ K,∫
D0

1

ϵ(ω)
∇α × (u−w) · ∇α × vdx

= −
∫
D0

ϵ(ω + δω)− ϵ(ω)

ϵ(ω)ϵ(ω + δω)
∇α ×w · ∇α × vdx

= −
∫
D0

ϵ′(ω)(δω) + o(|δω|)
ϵ(ω)ϵ(ω + δω)

∇α ×w · ∇α × vdx.
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Thus T (ω) is continuous in Ω. Let ϕ ∈ K be the solution of∫
D0

1

ϵ(ω)
∇α×ϕ ·∇α × vdx = −

∫
D0

ϵ′(ω)

ϵ2(ω)
∇α×u ·∇α × vdx ∀v ∈ K (12)

Since ϵ(ω) is bounded, straightforward calculations show that∥∥∥∥u−w

δω
− ϕ

∥∥∥∥ → 0 as δω → 0.

Hence T (ω)f is holomorphic on Ω. By Theorem 1.7.1 of [13], T (ω) is holo-
morphic .

By virtue of (10), F is a holomorphic Fredholm operator function of index
zero on Ω if Ω ⊂ C \ {0} is compact [13, 19].

3. FEM Discretization and Convergence

In this section, using the modified edge elements for (8), we propose a
discretization Fh for F and prove the convergence of the operator Fh as
h → 0. Then we show that the eigenvalues of Fh converges to those of F
employing the abstract convergence theory.

Let Th be a tetrahedra mesh for D0 with mesh size h. We shall use
the modified approximation spaces for H1

p (D0), Hp(curl;D0), Hp(div;D0),
L2(D0) with respect to Th, which are generated by multiplying α-phase func-
tion with usual basis functions [5, 10, 11]. For simplicity, we employ the
lowest order edge element of the first family and linear Lagrange element to
discretize (8) [25, 7]. The results can be extended to higher order or second
family edge elements.

Let Ṽ h ⊂ Hp(curl;D0) be the edge element space and W̃h ⊂ H1
p (D0) be

the Lagrange element space. The basis functions for Ṽ h and W̃h are denoted
by {Ψ̃j}j=1,··· ,N1 and {ϕ̃j}j=1,··· ,N2 , respectively. We define the α-modified
finite element spaces:

V α
h = span{e−iα·(x−xj)Ψ̃j}j=1,··· ,N1 ,

Wα
h = span{e−iα·(x−yj)ϕ̃j}j=1,··· ,N2 .

Here xj is the center of the jth edge and yj is the vertex corresponding to

the nodal basis function ϕ̃j. The degrees of freedom for the spaces Wα
h are
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again the nodal values. The space V α
h inherits the degrees of freedom from

Ṽ h, i.e.,

vαj (Ψ) =
1

|ej|

∫
ej

eiα·(x−xj)Ψ · τ jds, Ψ ∈ V α
h ,

where ej is an edge and τ j is the unit tangent vector along ej. Given a
sufficiently smooth vector function g, we define the interpolation operator

πα
hg =

∑
j

vαj (g)e
−iα·(x−xj)Ψ̃j.

The spaces V α
h andWα

h are the modified approximation spaces forHp(curl;D0)
andH1

p (D0), respectively. The modified approximation spaces forHp(div;D0)
and L2(D0) can be defined analogously [10, 11, 5]. They satisfy the commut-
ing diagram property with respect to the differential operators∇α,∇α×,∇α·
(see Theorem 4.1 of [11]).

The discrete problem for (8) is to find (uh, ph) ∈ V α
h ×Wα

h such that

a(uh,vh) + b(ph,vh) = (f ,vh), ∀vh ∈ V α
h ,

b(qh,uh) = 0, ∀qh ∈ Wα
h .

(13)

The corresponding discrete space of K is

Kh = {uh ∈ V α
h : b(qh,uh) = 0, ∀qh ∈ Wα

h }.

The well-posedness of the discrete problem (13) can be established by ver-
ifying the discrete coercivity of a(vh,vh) on Kh and the discrete inf-sup
condition b(qh,vh) on Wα

h × V α
h .

Following [5, 11], we assume that the solution u of (8) satisfies

u ∈ Hs(D0)
3, for some s >

1

2
,

∇× u ∈ Hr(D0)
3, for some r > 0.

(14)

We have the following convergence result.

Lemma 3. Let (u, p) ∈ Hp(curl;D0) × H1
p (D0) be solution of (8), and

(uh, ph) ∈ V α
h×Wα

h be solution of (13). Assume that u satisfies the regularity
assumption (14) and p ∈ H2(D0). Then

∥u− uh∥ ≤ Cht(|u|s + ∥∇ × u∥r), where t = min{s, r}. (15)
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Proof. Under the conditions of lemma, there is an element uI ∈ Kh satisfying
(see Lemma 9 of [5])

∥u− uI∥curl ≤ Cht(|u|s + ∥∇ × u∥r). (16)

For the mixed formulations (8) and (13), we have the following error estima-
tions [6, Theorem 5.2.5],

∥u− uh∥curl ≤ C

(
inf

vh∈Kh

∥u− vh∥curl + inf
qh∈Wα

h

∥p− qh∥1
)
.

By (16) and the standard interpolation error bounds for Lagrange elements
[7], we have

∥u− uh∥curl ≤ C
(
ht(|u|s + ∥∇ × u∥r) + h∥p∥2

)
≤ Cht.

Hence,
∥u− uh∥ ≤ ∥u− uh∥curl ≤ Cht.

Using the convergence of the mixed finite element method (13) for the
source problem (8), we are now ready to define the discrete operator function
Fh(ω) and prove the convergence of the eigenvalues of Fh(ω) to those of F (ω).

Define the L2-projection Ph : L2(D0) → V α
h such that

(f ,vh) = (Phf ,vh), ∀vh ∈ V α
h . (17)

For a fixed ω ∈ Ω, let uh be the solution of (13). The well-posedness of
(13) implies ∥uh∥ ≤ ∥Phf∥. The discrete solution operator Th(ω) for (13)
is such that Th(ω)Phf = uh. Now we define the discrete operator function
Fh : Ω → L(V α

h ,V
α
h) as

Fh(ω) = Th(ω)−
1

ω2
I, ω ∈ Ω. (18)

For simplicity, in the rest of paper, we denote Phf by fh and V h by V α
h .

The error estimate (15) and the well-posedness of (8) imply that

∥u− uh∥ ≤ Cht(|u|s + ∥∇ × u∥r) ≤ Cht∥f∥. (19)

Consequently,
∥T (ω)− Th(ω)Ph∥ ≤ Cht.

10



Due to the fact that

∥F (ω)vh−Fh(ω)vh∥ = ∥T (ω)vh−Th(ω)vh∥ ≤ ∥T (ω)−Th(ω)Ph∥∥vh∥, ∀vh ∈ V h,

we obtain that
∥F (ω)|V h

− Fh(ω)∥ ≤ Cht. (20)

The following lemma is obvious for the L2-projection Ph.

Lemma 4. For all f ∈ L2(D0), ∥f − Phf∥ → 0 as h → 0.

Lemma 5. Assume that Ω ⊂ C\{0} is compact. There exists h0 > 0 small
enough such that

sup
h<h0

sup
ω∈Ω

∥Fh(ω)∥ < ∞. (21)

Proof. Assume fh ∈ V h. Then

∥Fh(ω)fh∥ = ∥Th(ω)fh −
1

ω2
fh∥ ≤ ∥uh∥+

1

ω2
∥fh∥ ≤ C∥fh∥.

The last inequality is due to the well-posedness of the discrete problem (13)
and the fact that Ω ⊂ C\{0} is compact.

Lemma 6. Assume f ∈ L2(D0), then lim
h→0

∥Fh(ω)Phf − PhF (ω)f∥ = 0.

Proof. Using the definitions of F and Fh and Lemmas 4 and 3, we obtain
that

∥Fh(ω)Phf − PhF (ω)f∥ =

∥∥∥∥Th(ω)Phf − 1

ω2
Phf − PhT (ω)f + Ph(

1

ω2
f)

∥∥∥∥
= ∥Th(ω)Phf − PhT (ω)f∥
= ∥uh − u+ u− Phu∥
≤ ∥u− uh∥+ ∥u− Phu∥
≤ Cht. (22)

The proof is complete by taking h → 0.

Now we are ready to present the convergence theorem for the eigenvalues
of Fh. Its proof is to verify the conditions (b1)-(b4) and then employ Theorem
2 in Appendix.
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Theorem 1. Let ω0 ∈ σ(F ). Assume that h is small enough. Then there
exists {ωh ∈ σ(Fh)} such that ωh → ω0 as h → 0 and the following estimate
holds

|ωh − ω0| ≤ Ch
t
κ , (23)

where κ is the maximum rank of the eigenvectors associated with ω0 (see
Definition 4 in Appendix).

Proof. Let {hn} be a sequence of sufficiently small positive numbers with
hn → 0 as n → ∞ and Fn(ω) := Fhn(ω), V n := V hn and pn := Phn .

Due to Lemma 4, (b1) holds with X = Y = L2(D0), Xn = Yn = V n, and
qn = pn. (b2) and (b3) hold due to Lemma 5 and Lemma 6.

Next we verify (b4). Assume that vn ∈ V n, n ∈ N′ ⊂ N with ∥vn∥ ≤ 1
and

lim
n→∞

∥Fn(ω)vn − pny∥ = 0, (24)

for some y ∈ L2(D0). Let ρ(F ) and σ(F ) be resolvent set ρ(F ) and the
spectrum of F , respectively (see (A.2)). In the following, we consider ω ∈
ρ(F ) and ω ∈ σ(F ) separately.

Let ω ∈ ρ(F ). Then F (ω)−1 exists and is bounded. Let v = F (ω)−1y.
We have

vn − pnv = F (ω)−1
(
(F (ω)− Fn(ω))(vn − pnv)

+ Fn(ω)vn − pnF (ω)v + pnF (ω)v − Fn(ω)pnv
)
.

Recalling that ∥F (ω)|V n − Fn(ω)∥ ⩽ Cht
n from (20), it holds that

∥vn − pnv∥ ⩽ C
(
ht
n∥vn − pnv∥

+ ∥Fn(ω)vn − pnF (ω)v∥+ ∥pnF (ω)v − Fn(ω)pnv∥
)
. (25)

Using (24) and Lemma 6 we have that

∥vn − pnv∥ → 0 as n → ∞.

Let ω ∈ σ(F ). Denote by E(ω) the finite dimensional eigenspace of ω [19]
and by PE(ω) the projection from L2(D) to E(ω). Let F (ω)−1 be the inverse
of F (ω)|L2(D)/E(ω) from R(F (ω)) to L2(D)/E(ω). Due to (24), we have that

∥F (ω)vn −y∥ ⩽ ∥F (ω)vn −Fn(ω)vn∥+ ∥Fn(ω)vn − pny∥+ ∥pny−y∥ → 0,

as n → ∞. Since R(F (ω)) is closed, y ∈ R(F (ω)).

12



Let v′ := F (ω)−1y and v′
n := (I−pnPE(ω))vn. Similar to (25), we deduce

that

∥v′
n − pnv

′∥
⩽ (1− Cht

n)
−1C

(
∥Fn(ω)v

′
n − pnF (ω)v′∥+ ∥pnF (ω)v′ − Fn(ω)pnv

′∥
)
→ 0.

On the other hand, since E(ω) is finite dimensional, there is a subsequence
N′′ and v′′ ∈ E(ω) such that ∥PE(ω)vn−v′′∥ → 0 as N′′ ∋ n → ∞. Therefore
we have that

∥vn − pnv∥ ⩽ ∥v′
n − pnv

′∥+ ∥pnPE(ω)vn − pnv
′′∥ → 0, as N′′ ∋ n → ∞,

where v := v′ + v′′. We have verified (b1)-(b4) and (23) follows Theorem 2.
The proof is complete.

Corollary 1. If ω0 is a simple eigenvalue, i.e., κ = 1, one has that

|ω − ωh| ≤ Cht. (26)

4. Spectrum Indicator Method

The discrete form of (4) is to find ω ∈ Ω and (uh, ph) ∈ V α
h ×Wα

h such
that

a(uh,vh) + b(ph,vh) = ω2(uh,vh), ∀vh ∈ V α
h ,

b(qh,uh) = 0, ∀qh ∈ Wα
h .

(27)

Given α ∈ K, (27) can be written as the following matrix eigenvalue problem[
A(ω) BH

B 0

] [
u
p

]
= ω2

[
M 0
0 0

] [
u
p

]
, (28)

where A(ω) is the matrix associated to the sesquilinear form a(·, ·) defined
in (5), B is the matrix associated to b(·, ·) defined in (6) and M is the mass
matrix. Consequently, the eigenvalues of Fh(ω) are the eigenvalues of Fh(ω)
given by

Fh(ω) :=

[
A(ω) BH

B 0

]
− ω2

[
M 0
0 0

]
. (29)

To compute the eigenvalues of Fh, which are complex in general, we design
a new version of the spectral indicator method (SIM) proposed in [15, 16,
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17]. Without loss of generality, let Ω ⊂ C be a square and Θ be the circle
circumscribing Ω. Assume that Θ ⊂ ρ(Fh) such that Fh(ω)

−1 exists and is
bounded for ω ∈ Θ. Define an operator

G =
1

2πi

∫
Θ

Fh(ω)
−1dω, (30)

where i =
√
−1. Let gh be a random vector. If Fh has no eigenvalues inside

Θ, then Ggh = 0. If Fh has at least one eigenvalue inside Θ, then Ggh ̸= 0
almost surely. Thus |Ggh| can be used as an indicator for the location of
eigenvalues. If Θ contains eigenvalues inside, Ω is subdivided into smaller
squares, and the procedure continues until the eigenvalues are identified in a
small enough square.

In practice, one does not invert Fh(ω) but solves fh(ω) for Fh(ω)fh = gh.
Using the trapezoidal rule for the integral (30), we define an indicator IΩ for
Ω as

IΩ :=
1

L

∣∣∣∣∣
n0∑
j=1

wjfh(ωj)

∣∣∣∣∣ , (31)

where L is the length of Θ, ωj’s and wj’s are the quadrature points and
weights, respectively. The indicator IΩ is used to decide if Ω contains eigen-
values or not. If IΩ > δ0 for some threshold δ0 > 0, there exists at least one
eigenvalue in Ω. In such a case, Ω is called admissible and uniformly divided
into smaller squares. The indicators of these small squares are computed
and the admissible squares are subdivided. The procedure continues until
the size of the squares is smaller than a specified precision ϵ0, e.g., ϵ0 = 10−6.
The centers of the squares are the approximated eigenvalues

The following algorithm SIM-B computes all the eigenvalues of Fh in Ω.

SIM-B:

- Given a series of congruent squares {Ω0
n}

N0
n=1 covering Ω.

- Choose the precision ϵ0 and the indicator threshold δ0.

1. Generate a tetrahedral mesh for D0.

2. Let fh be a normalized random vector and set level i = 0.

3. At level i, if the size of the squares at level i is larger than ϵ0, do
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– For each square Ωi
n, n = 1, . . . , Ni at the current level, evaluate

IΩi
n
using (31).

– If |IΩi
n
| > δ0, uniformly divide Ωi

n into small squares and leave
them to the next level.

– i+ 1 → i.

4. Output eigenvalues.

The reason for taking Ω to be a square is that a compact region can be
covered by squares and it is easily to divide a square into smaller squares.
The use of Θ is due to the exponential convergence of the trapezoidal rule.
There are some gaps between Θ and Ω. But they are smaller than the
specified precision at the end of the procedure and can be ignored. We refer
the readers to [12, 15, 16, 33, 34] for more discussions and applications of
SIMs.

5. Numerical Examples

In the section, we present several numerical examples and show the dis-
persion relations ω(α) with α moving along Γ → X → M → R in the
Brillouin zone (Fig. 1). The fundamental cell is the unit cube D0 = [0, 1]3.
The photonic crystal consists of two components, the air and a dielectric
material, i.e., ϵ = ϵb in D1 ⊂ D0 and ϵ = ϵa = 1 in D0 \D1. The lowest order
edge element of the first family and the linear Lagrange element are used on
a tetrahedral mesh of D0. All calculations were performed on a tetrahedral
mesh with h ≈ 1/16. We take Ω = [0.2, 6.2]× [−3, 3], N0 = 1, n0 = 16 in our
examples.

Example 1. For validation of the proposed method, we first consider a
non-dispersive electric permittivity such that (1) becomes a linear eigenvalue
problem. The holomorphic operator function is simply Fh(ω) = Th − 1

ω2 I.
The structure consists of a silicon frame (D1) embedded in air shown in Fig. 2
(left). The colored part represents silicon and the blank part represents air.
The frame thickness is 0.125 in the unit cube with ϵb = 13 for silicon. This
model is called the scaffold structure. The dispersion diagram is shown in
Fig. 2 (right), in which a spectral gap appears in the band structure. The
numerical result is consistent with Fig. 2 of [10]. Note that in order to
compare with the Fig. 2 of [10], we set the value of y-axis to ω/(2π) in Fig.
2.
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Figure 2: Example 1. Left: Scaffold structure in unit cell. Right: The dispersion diagram
with a band gap (the yellow part).

Example 2. We consider a dispersive photonic crystal in this example.
The frequency-dependent electric permittivity function is given by

ϵb(ω) = ϵ∞
ω2
L − ω2

ω2
T − (1 + γi)ω2

, (32)

where ϵ∞ is the optical frequency dielectric constant, ωL and ωT are the
frequencies of the longitudinal optical and transverse optical vibration modes
of infinite wavelength, respectively, γ is a constant. In the computation, ϵ∞ =
20, ωT = 8.12THz, ωL = 8.75THz, γ = 0.02. Note that the eigenvalues are
complex with small imaginary parts. We use the real parts of the eigenvalues
for the dispersion diagrams shown in Fig. 3. It is seen that the photonic
structure attains a spectral gap between two bands.

Example 3. The structure of the photonic crystal is shown Fig. 4 (left).
The frequency-dependent electric permittivity is

ϵb(ω) = 5.8 + ϵ∞
ω2
L − 1.2ω2 − 2ω3 + 3.64ω4

ω2
T − 2.6ω − 1.2ω2 − ω3

, (33)

We set ϵ∞ = 18.6, ωT = 9.89THz, ωL = 10.45THz. The computational band
structure is demonstrated in Fig. 4 (right), where a band gap is also obtained.

6. Conclusions

We propose a novel numerical method for the band structure calculations
of 3D dispersive photonic crystals. The nonlinear Maxwell’s eigenvalue prob-
lem is first reformulated as the eigenvalue problem of a holomorphic operator
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Figure 3: Example 2. Left: Unit cell. Right: The dispersion diagram with a band gap
(the yellow part), c is the speed of light.
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Figure 4: Example 3. Left: The structure of the photonic crystal. Right: The dispersion
diagram with a band gap (the yellow part), c is the speed of light.

function. Using the well-posedness results of the related source problem, we
show that the operator function is Fredholm. A mixed finite element method
is then employed to discretize the operator. The convergence of the eigenval-
ues are proved by combining the convergence of the finite element method
for the source problem and the abstract approximation theory for holomor-
phic Fredholm operator functions. Finally the spectrum indicator method is
applied to practically compute eigenvalues, which require no a priori informa-
tion on the spectral distribution. The effectiveness of the proposed approach
is demonstrated by several numerical examples in 3D, which are among the
very few in literature.
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Efficient computation of 3D band structures is challenging due to the
large number of degrees of freedom of the discrete system. The evaluation
of the indicators (31) needs to solve many linear systems. Fortunately, the
SIM is highly scalable. Currently, combining with domain decompositions,
we are working on a parallel version of SIM to treat 3D photonic crystals on
finer meshes.

Appendix A. Holomorphic Fredholm Operator Function and Its
Abstract Approximation Theory

We present some preliminaries on holomorphic Fredholm operator func-
tions and the abstract approximation theory of the associated eigenvalue
problems [13, 19, 20, 3]. Let X, Y be complex Banach spaces and we denote
by L(X, Y ) as the space of bounded linear operators from X to Y . Ω ⊂ C is
a compact and simply connected set.

Definition 1. Let B be a Banach space and Ω ⊂ C be an open set. A
function f : Ω → B is called holomorphic if, for each w ∈ Ω,

f ′(w) := lim
z→w

f(z)− f(w)

z − w

exists.

Definition 2. An operator A ∈ L(X, Y ) is said to be Fredholm if

1. the range of A, denoted by R(A), is closed in Y ;

2. the null space of A, denoted by N (A), and the quotient space Y/R(A)
are finite-dimensional.

The index of A is the integer defined by

ind(A) = dimN (A)− dim(Y/R(A)).

Let F : Ω → L(X, Y ) be a holomorphic operator function on Ω. Denote
by Φ0(Ω,L(X, Y )) the set of holomorphic Fredholm operator functions of
index zero [13]. We assume that F ∈ Φ0(Ω,L(X, Y )), i.e., for each ω ∈
Ω, F (ω) ∈ L(X, Y ) is a Fredholm operator of index zero. The operator
eigenvalue problem is to find (ω, u) ∈ Ω×X, u ̸= 0, such that

F (ω)u = 0. (A.1)
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The resolvent set ρ(F ) and the spectrum σ(F ) of F with respect to Ω are
respectively defined as

ρ(F ) = {ω ∈ Ω : F (ω)−1 ∈ L(Y,X)} and σ(F ) = Ω\ρ(F ). (A.2)

Furthermore, we assume that ρ(F ) ̸= ∅. Then the spectrum σ(F ) has no
cluster points in Ω and every ω ∈ σ(F ) is an eigenvalue [19].

The dimension of N (F (ω)), the null space of F (ω) for an eigenvalue ω,
is called the geometric multiplicity.

Definition 3. An ordered sequence of elements x0, x1, . . . , xk in X is called
a Jordan chain of F at an eigenvalue ω if

F (ω)xj +
1

1!
F (1)(ω)xj−1 + . . .+

1

j!
F (l)(ω)x0 = 0, j = 0, 1, . . . , k,

where F (j) denotes the jth derivative.

The length of any Jordan chain for an eigenvalue is finite. Denote by
m(F, ω, x0) the maximal length of a Jordan chain formed by an eigenfunction
x0. The maximal length of Jordan chains for an eigenvalue ω is denoted by
κ(F, ω). Elements of any Jordan chain are called generalized eigenfunctions
of ω.

Definition 4. The closed linear hull of all generalized eigenfunctions of an
eigenvalue ω, denoted by G(ω), is called the generalized eigenspace.

A basis x1
0, . . . , x

J
0 of the eigenspace N (F (ω)) is called canonical if

(i) m(F, ω, x1
0) = κ(F, ω),

(ii) xj
0 is an eigenfunction of the maximal possible order belonging to some

direct complementMj inN (F (ω)) to the linear hull span{x1
0, . . . , x

j−1
0 },

i.e.,
m(F, ω, xj

0) = max
x∈Mj

m(F, ω, x) for j = 2, . . . , J.

The numbers mj(F, ω) := m(F, ω, xj
0), j = 2, . . . , J , are called the partial

multiplicities of ω. The number

m(ω) :=
J∑

j=1

mj(F, ω)
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is called the algebraic multiplicity of ω and coincides with the dimension of
the generalized eigenspace G(ω).

To approximate the eigenvalues of F , consider operator functions

Fn ∈ Φ0(Ω,L(Xn, Yn)), n ∈ N,

such that the following properties hold [19, 3].

(b1) There exist Banach spacesXn, Yn, n ∈ N, and linear bounded mappings
pn ∈ L(X,Xn), qn ∈ L(Y, Yn) such that

lim
n→∞

∥pnv∥Xn = ∥v∥X , v ∈ X, lim
n→∞

∥qnv∥Yn = ∥v∥Y , v ∈ Y.

(b2) The sequence {Fn(·)}n∈N satisfies

∥Fn(ω)∥ ≤ ∞ for all ω ∈ Ω, n ∈ N.

(b3) {Fn(·)}n∈N approximates F (ω) for every ω ∈ Ω, i.e.,

lim
n→∞

∥Fn(ω)pnx− qnF (ω)x∥Yn = 0 for all x ∈ X.

(b4) For any subsequence xn ∈ Xn, n ∈ N ′ ⊂ N with ∥xn∥Xn , n ∈ N ′

bounded and
lim

N ′∋n→∞
∥Fn(ω)xn − qny∥Yn = 0

for some y ∈ Y , there exists a subsequence N ′′ ⊂ N ′ and a x ∈ X such
that

lim
N ′′∋n→∞

∥xn − pnx∥Xn = 0.

If the above conditions are satisfied, one has the following abstract ap-
proximation result (see Section 2 of [20] or Theorem 2.10 of [3]).

Theorem 2. Assume that (b1)-(b4) hold. For any ω ∈ σ(F ) there exists
n0 ∈ N and a sequence ωn ∈ σ(Fn), n ≥ n0, such that ωn → ω as n → ∞.
For any sequence ωn ∈ σ(Fn) with this convergence property, one has that

|ωn − ω| ≤ Cε1/κn ,

where
εn = max

|η−ω|≤δ
max
v∈G(ω)

∥Fn(η)pnv − qnF (η)v∥Yn ,

for sufficiently small δ > 0. Here G(ω) is generalized eigenspace of corre-
sponding eigenvalue ω and κ is the maximum rank of eigenvectors associated
to ω.
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