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Abstract In this paper, one level set method is applied to find the interface of discontinuity of

the conductivity in EIT(Electrical impedance tomography) problem. The key of this reconstruction

algorithm is to choose the suitable velocity function. The numerical examples demonstrate that the

reconstruction algorithm is efficient and stable.
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1 Introduction

Different materials would display different electrical conductivities, thus the conductivity σ(x)
can be used to infer the internal structure of an object. Due to this fact, Electrical impedance
tomography (EIT) has been developed rapidly during the last two decades, and its aim is
to recover the interior conductivity from the simultaneous measurements of the voltage and
current on the boundary. To describe more rigorously, let Ω ⊂ R2 be a bound object with the
conductivity σ(x), and suppose that the current flux on the boundary ∂Ω of a bounded object
Ω is g(x), then the electric potential u(x) inside the domain and on the boundary satisfies

∇ · (σ∇u) = 0 in Ω, σ
∂u

∂n
= g on ∂Ω, (1)

where n denotes the unit outward normal to ∂Ω. Assuming that σ(x) ∈ L∞(Ω̄) and g ∈
H− 1

2 (Ω), the above Neumann boundary value problem has a unique solution u ∈ H1(Ω) up to
a constant (cf. [16]), where H− 1

2 (Ω) and H1(Ω) are the standard Sobolev spaces (cf. [1]).

The task of the EIT problem is to determine σ(x) from one pair of the boundary voltage and
current measurement or several pairs of the boundary voltage and current measurements. Elec-
trical Impedance Tomography is a hopeful imaging tool with important applications. Examples
of medical applications of EIT are detection of pulmonary emboli (cf. [8]) and monitoring of
heart function (cf. [17]), etc. Besides, there are many important applications in the fields such
as geophysics, environmental sciences and nondestructive testing of materials(cf. [26][27][28]).

One of the mathematical formulations of EIT problem was proposed by Caldéron in 1980 (cf.
[7]). This problem is called Caldéron problem now, which is to reconstruct the conductivity

Received – –, 2007; accepted – –, 2008

DOI: ————————-
† Corresponding author: Wenbin Chen (email: wbchen@fudan.edu.cn)
This work was partially supported by the Research Foundation for Doctor Programme (Grant No. ———) and

the National Natural Science Foundation of China (Grant No. ——)



Jin Cheng et al.

Figure 1: The simplified model with piecewise conductivity σ

from the all boundary voltage and current measurements. The mathematical formulation is
to reconstruct the conductivity σ from so called Dirichlet-to-Neumann map Λσ : H

1
2 (Ω) →

H− 1
2 (Ω). Actually the Caldéron problems inspire the active studies of the inverse problems for

partial differential equations.

In this paper, we will assume that σ(x) is piecewise constant in Ω, as shown in Figure , i.e.

σ =

{
σ+ x ∈ D̄,

σ− x ∈ Ω̄\D̄.

Furthermore, we assume that the conductivity satisfies σ+ À σ−. This happens in the oil
extraction industry where water is injected in a reservoir to force the oil out (cf. [32]), and to
estimate the fraction of water is important.

The water typically has a high salt content and is therefore highly conductive. In our
formulation, D̄ is water surrounded by oil in Ω̄\D̄, and according to the practical experiments,
the electric potential in the region of water is close to zero (cf. [32]). Therefore, we are ready
to set up one simplified model of original EIT, that is





∆u = 0 in Ω\D̄ ,

u = 0 on ∂D,
∂u

∂n
= g on ∂Ω,

u = f on ∂Ω,

(2)

and where the function f is the electric potential measurement on the boundary ∂Ω.

The inverse problem we discuss in this paper is to reconstruct the domain D from one pair
(f, g). From the practical point of view, the purpose of this study is to find a effective and
fast algorithm to reconstruct the interface surface ∂D. To our knowledge, there are mainly two
categories of reconstruction methods for the EIT problem: direct reconstruction algorithms and
iterative ones. The direct methods include the so called factorization method proposed by Hank
and Brühl (cf. [4],[5], [6]), and reconstruction algorithms based on the formula in the uniqueness
proof by Nachmann (cf. [22],[30]). Such direct methods are fast, however, all the information of
the DtN mapping Λσ is required, which is often impractical. The iterative methods include the
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output least squares method (cf. [8]) and the variational method proposed by Kohn (cf. [21]),
which are both based on the solutions of the nonlinear optimization problems. However, due
to strong non-linearity and severely ill-posedness of the problems, conventional EIT algorithms
may only yield poor resolution images.

In this paper, we propose a level set method to reconstruct the interface ∂D. The level
set method was proposed by Osher and Sethian in their seminar paper (cf. [25]) to simulate
propagating fronts and interfaces. Now it has became a powerful tool to simulate the evolution
of interface, this is due to the fact that the level set technique can handle topological changes
automatically and effectively. The level set method has been applied successfully in many areas,
especially in image processing and computational physics (cf. [24]). However, its applications
to inverse problems have just emerged. In 1996, Santosa pointed out how this technique can be
applied to the solution of inverse problems involving obstacles (cf. [29]). Since then, the level
set methods have been widely used for the inverse problems in partial differential equations.
For instance, the level set method has been developed for the inverse scattering problems, here
we refer to Dorn and Lesselier’s review paper(cf. [15]). Chan and Tai also successfully proposed
the level set techniques for a problem similar to (1). However, they are interested to consider
the problem where the u or ∇u is essentially available at every point of Ω (cf. [9], [10]). While
in our paper, we only assume that the boundary data is known. Now we explain how we can
use the level set method to decide the domain D if only the values on the boundary ∂Ω are
measured.

We introduce an auxiliary time variable t, and the domain D is replaced by the domain Dt

with the boundary ∂Dt, the potential u(x) is also replaced by u(t, x) correspondingly. At time
t, when the boundary ∂Dt is fixed, then u(t, x) satisfies the following boundary value problem:





∆u(t, x) = 0 x ∈ Ω\D̄t

u(t, x) = 0 x ∈ ∂Dt,
∂u(t,x)

∂n = g(x) x ∈ ∂Ω.

(3)

Now we defined the map F : R2 → L2(∂Ω) as follows

F (Dt) = u(t, x) x ∈ ∂Ω. (4)

Comparing it with the original problem (2), then our task becomes whether we can move the
boundary ∂Dt such that F (Dt) will tend to f , therefore u(t, x) will arrive at the stationary state
u(x). The level set method is one smart strategy to capture the movement of the boundary: Re-
garding the interface ∂Dt as the zero level set of the function φ(t, x), once some proper velocity
function V(t, x) could be found for the boundary ∂Dt , then we could solve the corresponding
Hamilton-Jacobi equation

∂φ(t, x)
∂t

+ V(t,x) · ∇φ(t, x) = 0

to simulate the evolution of ∂Dt. Obviously, the key of our algorithm is how to decide the
velocity function V(t, x).

In this paper, illumined by the work of the shape optimization, we can explicitly decide the
velocity function V(t, x) such that

d

dt
‖F (Dt)− f‖2L2(∂Ω) < 0.
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Numerical examples demonstrate that our algorithms are efficient. when D is a single connected
domain, or is composed of several inclusions far separated, then the boundary ∂D of D is
accurately reconstructed. Moreover, the algorithm is very stable against noise, which is not
shared by traditional EIT reconstruction algorithms. Therefore, we believe that our method is
hopeful in reconstructing the interface of discontinuity in the conductivity.

The rest of the paper is organized as follows. In section 2, we briefly introduce the level set
method and propose a way to choose the velocity such that the cost function ‖F (Dt)− f‖L2(∂Ω)

will decrease with respect to t. The reconstruction algorithm is constructed for approximating
the interface ∂Dt. In section 3, some theoretical results are presented and also the analysis for
the Tikhonov regularization is obtained. In section 4, we show the performance of our algorithm
by several numerical examples. Some concluding remarks are given in section 5.

2 Reconstruction of interface ∂D based on the level set method

2.1 Level set method

In this subsection, the level set method is introduced briefly, more details can be found in the
monograph by Osher and Fedkiw (cf. [24]). Suppose that at time t, the boundary ∂Dt of Dt

is evolved with the velocity V(t, x), then the most direct method to simulate and predict the
motion of ∂Dt in the future time is to solve the ordinary differential equation

dx

dt
= V(t, x) (5)

on ∂Dt. This is a Lagrangian formulation of the interface evolution. Then one has to solve
Equation (5) numerically, which means that a set of grids must be put on ∂Dt, and the velocity
V(t, x) is discretized on the grids accordingly. If no topological change ever happens to boundary
∂Dt of Dt, then the Lagrangian formulation is enough to simulate the motion. However, if
the velocity field V(t, x) is going to change the topology of the boundary, just like the one
presented in Figure 2, this method will no longer be appropriate, since it is hard to characterize
the topological change directly.

In order to overcome this difficulty, a level set function φ(t, x) are proposed for the boundary
∂Dt, i.e.,

φ : (0,∞)× R2 → R1, such that ∂Dt = {(t, x) | φ(t, x) = 0}. (6)

Usually it is assumed that φ < 0 inside ∂Dt, and φ > 0 outside (see Figure 2). Then we
would find that, though topological property of ∂Dt changes when the boundary evolves from
left to right, we could just lift up the level set function accordingly to capture the motion of
the boundary. Thus the topological change could be handled automatically with the level set
function φ. The level set method is an Eulerian formulation which is proposed by Osher and
Sethian in 1988 to simulate propagating fronts (cf. [25]).

It could be easily seen that the level set function φ satisfies the partial differential equation

∂φ(t, x)
∂t

+ V(t, x) · ∇φ(t, x) = 0. (7)

It is usually called level set equation and is a Hamilton-Jacobi equation. Moreover, if the
interface moves under a velocity field in the normal direction n(t, x), i.e, V(t,x) = v(t, x)n(t, x),
then the above level set equation could be reformulated as

∂φ(t, x)
∂t

+ v(t, x) · |∇φ(t, x)| = 0, (8)
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Figure 2: Topological change of the interface(above) and the corresponding level set functions
(below).

if we notice that n(t,x) =
∇φ(t, x)
|∇φ(t, x)| .

In order to solve (7) and (8) numerically, we could apply the Euler method in the time
direction, whereas in the space direction, the simple first-order accurate upwind scheme could
be used, or ENO, WENO scheme with higher-order spatial accuracy could be applied (cf. [24]).

2.2 Choice of velocity

In this subsection, we will give the explicit expression of the velocity. Generally, the most direct
method to solve (2) is find the solution of the following optimization problem: Find D ⊂ Ω
such that

R(D) = min
D̃⊂Ω

R(D̃) (9)

and

R(D̃) :=
1
2

∥∥∥F (D̃)− f
∥∥∥

2

L2(∂Ω)
+ α

∫

∂D̃

1 ds, (10)

where the map F : R2 → L2(∂Ω) is defined as (4), α
∫

∂D̃
1 ds is the term of regularization, and

α > 0 is the regularization parameter, i.e., we would like to penalize the length of the boundary
∂D̃. Such regularization method is often used in image processing (cf. [23]).

In order to explain how we can choose one suitable velocity V(t, x), let us consider the
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problem without regularization, i.e., α = 0, then the optimization problem becomes

min
D̃⊂Ω

R1(D̃) := min
D̃⊂Ω

1
2

∥∥∥F (D̃)− f
∥∥∥

2

L2(∂Ω)
. (11)

Generally, we try to find a ’descent direction’, and along the descent direction, R1(D̃) will be
reduced. Equivalently, we would like to find a velocity V(t, x) for the boundary ∂Dt of Dt such
that

d

dt
R1(Dt) < 0.

For any potential u(t, x) which solves the boundary problem (3), suppose that u(t + δt, x)
satisfies 




∆u(t + δt, x) = 0 x ∈ Ω\D̄t+δt,

u(t + δt, x) = 0 x ∈ ∂Dt+δt,
∂u(t + δt, x)

∂n
= g(x) x ∈ ∂Ω.

let us define the Eulerian derivative u′(t, x) of u(t, x) as(cf. [15], [31]):

u′(t, x) = lim
δt→0+

u(t + δt, x)− u(t, x)
δt

,

then we have the following lemma.

Lemma 2.1. The Eulerian derivative u′(t, x) of u(t, x) is the solution of the following bound-
ary problem 




∆u′(t, x) = 0 x ∈ Ω\D̄t,

u′(t, x) +∇u(t, x) ·V(t, x) = 0 x ∈ ∂Dt,
∂u′(t, x)

∂n
= 0 x ∈ ∂Ω.

(12)

This lemma is important for us to choose the velocity V(t, x), and the proof of the lemma
can be found in (cf. [31]).

Theorem 2.1.(Choice of velocity) Suppose that Dt ⊂ Ω, n(t, x) is the unit outward
normal to ∂Dt. If the velocity is chosen as V(t, x) = v0(t, x)n(t, x), where the function v0(t, x)
is

v0(t, x) =
∂u1(t, x)

∂n

∂u2(t, x)
∂n

, (13)

and u1(t, x), u2(t, x) satisfies the boundary value problems





∆u1(t, x) = 0 x ∈ Ω\D̄t,

u1(t, x) = 0 x ∈ ∂Dt,
∂u1(t, x)

∂n
= g(x) x ∈ ∂Ω,

(14)

and 



∆u2(t, x) = 0 x ∈ Ω\D̄t,

u2(t, x) = 0 x ∈ ∂Dt,
∂u2(t, x)

∂n
= u1(t, x)− f(x) x ∈ ∂Ω.

(15)
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Then we have
d

dt
R1(Dt) < 0.

Proof: Let u′(t, x) be the Eulerian derivative of u1(t, x), and note that on the boundary ∂Ω,
the normal derivative of u2(t, x) is equal to u1(t, x)− f(x), then it is easy to be checked that

d

dt
R1(Dt) =

∫

∂Ω

(u1(t, x)− f(x))u′(t, x)ds =
∫

∂Ω

∂u2

∂n
u′ds. (16)

Note that u2 and u′ both satisfy the Laplace equation (see Equation (15) and Equation (12)),
and if we use the the Green’s formula: for any w, v ∈ H1(Ω\Dt),

∫

Ω\Dt

(∆wv −∆vw) dx =
∫

∂Ω

(
∂w

∂n
v − ∂v

∂n
w

)
ds−

∫

∂Dt

(
∂w

∂n
v − ∂v

∂n
w

)
ds,

then
d

dt
R1(Dt) =

∫

∂Dt

∂u2

∂n
u′ds.

The term of the right hand side can be further transformed if we use the lemma 2.1, that is to
say, from the value of Eulerian derivative u′ on the interface ∂Dt(see Equation (12)), then

d

dt
R1(Dt) = −

∫

∂Dt

∂u2

∂n
(∇u1 ·V) ds.

So if the velocity is chosen as V(t, x) = v0(t, x)n(t, x), and v0(t, x) is defined as (2.9), then

d

dt
R1(Dt) = −

∫

∂Dt

(
∂u2

∂n

∂u1

∂n

)2

ds < 0.

Then we prove the theorem.

Remark 2.3 Here two comments are given:

1. Note that u1|∂Dt = u2|∂Dt = 0, then the partial derivative of u1 and u2 vanish along the
tangent direction, therefore, v0(t, x) can also rewritten as

v0(t, x) = ∇u1(t, x) · ∇u2(t, x).

2. From the proof of this theorem, we know that V(t, x) is not unique, generally, we can
choose

V(t, x) = ω(t, x)v0(t, x)n(t, x),

if we require that the weight function ω(t, x) > 0.

For the original problem (9)(10) with the regularization parameter α, we have the following
corollary.

Corollary 2.4 Let v0(t, x) defined as (2.9) and n(t, x) be the unit outward normal to Dt. If
we set V(t, x) = v(t, x)n(t, x) and

v(t, x) = v0(t, x)− ακ(t, x), (17)

7



Jin Cheng et al.

where κ is the mean curvature of ∂Dt defined by κ = ∇ · n, then we have

d

dt
R(Dt) < 0.

Proof: Here the regularization term
∫

∂1Dt
ds is very common, and often used in image pro-

cessing (cf. [23]) and shape optimization problem (cf. [31]). The Eulerian derivative can be
obtained immediately (for example, see (cf. [1])):

d

dt

∫

∂Dt

1 ds =
∫

∂Dt

κ(V · n(t, x)) ds,

Repeating the proof of Theorem 2.1, we can obtain

d

dt
R(t, x) = −

∫

∂Dt

(v0(t, x)− ακ)(V · n(t, x)) ds. (18)

Obviously, if we choose V(t, x) as (2.18), then d
dtR(t, x) < 0.

Therefore, if the velocity on boundary ∂Dt of Dt is defined as in Corollary 2.4, then
d
dtR(Dt) < 0, i.e., V(t, x) is a descent direction for R(Dt) at time t. On the other hand,
note that V(t, x) is parallel to the outward unit normal n(t, x), thus the corresponding level
set function φ(t, x) satisfies

∂φ(t, x)
∂t

+ v(t, x) |∇φ(t, x)| = 0.

2.3 Reconstruction algorithm

Based on the analysis in the previous subsection, now we are ready to present our reconstruction
algorithm. The inputs of the algorithm are the boundary measurements f and g simultane-
ously, and the output is the interface ∂Dk to approximate ∂D of the EIT problem (2). Our
reconstruction algorithm is one standard level set algorithm with the velocity V(t, x) chosen in
Corollary 2.4.

Reconstruction algorithm for EIT:

(1) (Initialization of D0). Set the level set function as φ0 at the initial time t = 0, let ∂D0 =
{(t, x) | φ0(t, x) = 0}, and D0 = {(t, x) | φ0(t, x) < 0}.

(2) (Update uk
1 and uk

2). For k = 0, 1, 2, · · · , solve the boundary value problems




∆uk
1 = 0 in Ω\D̄k,

uk
1 = 0 on ∂Dk,

∂uk
1

∂n
= g on ∂Ω,

and





∆uk
2 = 0 on Ω\D̄k,

uk
2 = 0 on ∂Dk,

∂uk
2

∂n
= uk

1 − f on ∂Ω.

(19)

If
∥∥uk

1 − f
∥∥2

L2(∂Ω)
< ε, where ε is a given tolerance, then the iteration is stopped, whereas

goes to (3).
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(3) (Choose the velocity). Suppose that the level set equation is discretized on rectangular
grids G in space direction, then we set vk = ∇uk

1 ·∇uk
2−ακk on grids which lie in domain

Ω\D̄k. For grids lie in Dk, we interpolate vk linearly on every row of grids.

(4) (Update the level set function). Solve the level set equation
∂φk

∂t
+ vk

∣∣∇φk
∣∣ = 0. The

time direction is discrtized in Euler formula, i.e.,
φk+1 − φk

4t
+ vk

∣∣∇φk
∣∣ = 0. In space

direction, we use ENO or WENO formula, where the length of time step 4t and space
time 4x satisfy the stability condition of the difference scheme.

(5) (Reinitialization of φk+1). Initialize periodically the level set function φk+1 to a signed
distance function if necessary.

(6) (Update Dk+1). Find the zero level set ∂Dk+1 of φk+1, i.e.,

∂Dk+1 = {(t, x) | φk+1(t,x) = 0},

set Dk+1 = {(t, x) | φk+1(t,x) < 0} and goes to (2).

During each iteration, we solve boundary value problems (19) in step (2) and choose the
velocity vk in step (3) to get the velocity of boundary ∂Dk of Dk along the outward normal
direction. Just as we have proven in the previous subsection, vk is a descent direction of∥∥uk

1 − f
∥∥

L2(∂Ω)
, i.e ‖F (Dk)− f‖L2(∂Ω), where F is defined as (4). On the other hand, we

introduce the level set function φk and solve the Hamilton-Jacobi equaiton
∂φk

∂t
+ vk

∣∣∇φk
∣∣ = 0

in order to capture the evolution of boundary ∂Dk. Moreover, the criterion for the stop of
iteration is to estimate whether

∥∥uk
1 − f

∥∥2

L2(∂Ω)
< ε. It should be noted that after solution of

the Hamilton-Jacobi numerically in step (3), we would reinitialize the level set function φk+1

periodically if necessary. The reason is that only the sign of the level set function φk+1, i.e. the
zero level set ∂Dk+1, is critical, while the value of φk+1 itself is not that important. Thus if
φk+1 is a singed distance function, then ∂Dk+1 could be more accurately detected. For more
details about the construction of the signed distance function, we refer to the Chapter 7 of [24].

3 Theoretical results for EIT problem and Tikhonov regularization

In this section, we will give some theoretical results for the inverse problem (2) and the Tikhonov
regularization. Because of the page limitation of this paper, instead of giving the detail proofs,
we only present the results and refer to some related references.

First we discuss the uniqueness and stability of EIT problems.

Assume that the domains Dj ⊂ Ω, j = 1, 2, and the boundaries of these two domains can
be described by the following parameter equations:

{
x = ϕj(t),

y = ψj(t),

where the parameter t ∈ [0, T ].
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Consider the EIT problem:




∆uj = 0 in Ω\D̄j ,

uj = 0 on ∂Dj , j = 1, 2
∂uj

∂n
= g on ∂Ω,

uj = fj on ∂Ω,

(20)

Theorem 3.1. Suppose that f1 = f2, on ∂Ω in the EIT problems (20) and g 6= 0. We have
that

D1 = D2.

For proving this theorem, we will use the unique continuation for the solutions of Lapalce
equations. The reader can refer to the references [2] [3] and [12].

Since the embedding from Sobolev space W 1.1 to the space of the continuous functions in
one dimensional case is compact, by the similar method in [12], we can prove the following
conditional stability results for our problem.

Theorem 3.2. Suppose that ‖g‖L∞ > c0 > 0 and ‖ϕj‖W 1,1 ≤ M, ‖ψj‖W 1,1 ≤ M in the
EIT problem (20). Here c0 and M are given constants. Then there are constants C > 0 and
0 < γ < 1, which depend on Ω, M and c0, such that

dist(D1, D2) ≤ C

(
1

|log | log ‖f1 − f2‖L2 ||
)γ

.

Remark 3.3. From the results in Theorem 3.2, we know that the EIT problem we discuss
in this paper is a severely ill-posed problem.

As for the Tikhonov functional R(D) we proposed in the previous section, we have the
following results:

Theorem 3.4. For the Tikhonov functional R(D), there exists a D∗ : ϕ∗(t), ψ∗(t) ∈ W 1,1(0, T )
such that

R(D∗) = min
D∈W 1,1

R(D)

where D ∈ W 1,1 means that the parameter representation ϕ(t), ψ(t) ∈ W 1,1(0, T ).

This theorem can be proved by the methods which are used in [11] and [18]. We mainly use
the fact that the embedding from Sobolev space W 1.1 to the space of the continuous functions
in one dimensional case is compact. We will not give the detail proof here.

Finally, we should point out that, by the results in [13], the conditional stability in Theorem
3.2 implies that convergence rate of the Tikhonov regularized solution.

Theorem 3.5. Suppose that the EIT problem (2) has the exact solution D : ϕ(t), ψ(t) and
the data f contains some error, i.e., we know fδ, which satisfies

‖f − fδ‖L2 ≤ δ.
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If D∗ : ϕ∗(t), ψ∗(t) is the minimizer of the following functional

R(D) :=
1
2
‖F (D)− fδ‖2L2(∂Ω) + α

∫

∂D

1ds.

We take α = δ2. Then we have that

‖ϕ− ϕ∗‖, ‖ψ − ψ∗‖ ≤ C1

(
1

log | log δ|
)γ

where C1 > 0 and 0 < γ < 1 are constants.

This theorem can be proved by the method in [13] and the results in Theorem 3.2.

4 Numerical examples

We will demonstrate both the advantage and disadvantage of our algorithm by various numerical
examples. In order to test the accuracy of the algorithm we consider both the situations where
D is simple connected and multi-connected. Finally, we also demonstrate the noise tolerance of
the algorithm. For all the examples, we assume that Ω = (0, 1)× (0, 1), and the current g = 1
on the boundary ∂Ω. Generally, due to the existence of the domain D, the simulating data f

can not obtained exactly. Here f is solved by the standard second order finite element method,
and the maximal mesh size is requested to be less than 0.02, the number of the elements and
the degree of the freedom are changed according the domain D. As an example, the mesh and
the solution of the Example 3.2 are plotted in Figure 3. In all examples, ε is set to be 10−6.
The choice of the time step ∆ is required to satisfy the CFL stability condition, here we set

sup
x
|vk(x)|∆t = α∆x,

the parameter α is chosen between 0.75 and 0.9 to adjust the moving speed of the level set.

Example 3.1 (D is a simple connected domain) In our first example, the real interface of
discontinuity ∂D is an ellipse centered in (0.4, 0.5), with long semi-axis 0.2 and short semi-axis
0.1 respectively (see the solid line Figure 4). We assume that the initial guess ∂D0 is a circle
centered in (0.5, 0.5) with radius 0.4 , that is the dotted line in the Figure 4. It could be
seen that the numerical solution ∂Dk (dotted line) is very close to the real interface ∂D when
k = 100, and ∂Dk almost coincidences with ∂D when k = 200. Thus, our algorithm is very
accurate and efficient when D is a simple connected domain.

Example 3.2 (D contains several simply connected domains) Here we assume the
domain D is composed of two single connected areas D1 and D2, where D1 is a circle with radius
0.1, whereas D2 is an ellipse with long semi-axis 0.1 and short semi-axis 0.05, respectively. The
initial guess is the same as the one in Example 3.1. From Figure 5, we find that when k = 200,
the topology of ∂Dk has greatly changed, and when k = 500, the small areas centered in (b)
disappeared such that ∂Dk is close to the real solution.

Example 3.3 (D contains several simply connected domains) We can also consider the
multi-connected domain D is composed of three components D1, D2 and D3. However, the
distance between each component is not as far as one in Example 3.2. The results are plotted
in Figure 6, it could be seen from this figure that when k = 100, ∂Dk is an envelope of D1, D2
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Figure 3: Mesh and finite solution of the forward problem in the Example 3.2, here g = 1. Left:
the mesh; right: the finite element solution.
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Figure 4: (a)Initial guess; (b) Reconstruction image when k = 50; (c) k = 100; (d) k = 200.
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Figure 5: (a)Initial guess; (b) Reconstruction image when k = 200; (c) k = 500; (d) k = 1000.
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Figure 6: (a)Initial guess; (b) Reconstruction image when k = 200; (c) k = 500; (d) k = 1000.
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Figure 7: (a) Re-choice of the the initial guess; (b) Reconstruction image when k = 100.

and D3, moreover, the envelope does not make any improvement even when k = 200 and 500.
We also find that even if more than one current is injected, or the value of current g is changed
on the boundary ∂Ω, there is still little improvement of the numerical result. The reason for
this phenomenon is that we only get a local minimum solution for the optimization problem
(10), rather than the global minimum solution. In the nonlinear optimal problem, obtaining
one local minimum instead of the global minimum is a very fundamental problem, which still
bothers mathematicians. Thus the resolution of our algorithm is not high enough to identify
all the boundaries of components in D when they are near each other.

Example 3.4 (Re-choice of the initial guess) In example 3.3, the contour of level set is an
envelop of the unknown domain D, but it is hard to be improved by the iteration. In order to
identify all the boundaries of the components in D in Example 3.3, we use one restart strategy
to avoid the local minimum point of the optimal problem: Choose three small domains in the
envelop as new ”seeds”, restart the iteration process. Figure 7(a) shows the new initial domains
and the 7(b) is the results after 100 iterations, which shows that the domain D can be identified
by the new initial guess.

Example 3.5 (Stability) In this example, we will demonstrate the error tolerance of the
algorithm. For Example 3.1 and 3.2, when f is solved with the standard second order finite
element method, we would add f with an uniformly distributed error with the magnitude of 10%.
In our numerical test, we would set the regularization parameter α = 10−3, the reconstruction
image is plotted in Figure 8(b) and Figure 9(b) respectively. It could be seen that our algorithm
is very stable against the noise, this is not shared by common traditional algorithms. On the
other hand, we find that the regularization parameter α needs not to be too big, a magnitude
of 10−3 is totally enough, this also ensure that the time step 4t would not be to small when
solving the level set equation.

5 Conclusions

In this paper, we apply one level set method for EIT problem and the reconstruction algorithm
is proposed. The key of the reconstruction algorithm is to choose suitable velocity function such
that the interface ∂Dt will approximate the real interface ∂D. We prove that the cost function
R(Dt) can decrease with respect to t if the velocity function V(t, x) is chosen by our method.
The numerical examples show that , when D is a simple connected domain, or is composed of
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Figure 8: (a)Initial guess; (b) Reconstruction image when k = 200.
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Figure 9: (a)Initial guess; (b) Reconstruction image when k = 2000.

several simple connected domains which are not so close to each other, the boundary ∂D of
D is accurately reconstructed. For the case that inclusion contains several simple connected
domains, which are close to each other, our experiments show that the choice of the initial guess
is very important. Actually, we propose one strategy for re-choicing the initial domain.

Compared with the other traditional EIT reconstruction algorithms, our algorithm is very
stable against the noise. We believe our reconstruction method is a hopeful method for EIT
problem.
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