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Abstract. In this work, we develop a stochastic gradient descent method for the com-
putational optimal design of random rough surfaces in thin-film solar cells. We formu-
late the design problems as random PDE-constrained optimization problems and seek
the optimal statistical parameters for the random surfaces. The optimizations at fixed
frequency as well as at multiple frequencies and multiple incident angles are investi-
gated. To evaluate the gradient of the objective function, we derive the shape deriva-
tives for the interfaces and apply the adjoint state method to perform the computation.
The stochastic gradient descent method evaluates the gradient of the objective function
only at a few samples for each iteration, which reduces the computational cost signifi-
cantly. Various numerical experiments are conducted to illustrate the efficiency of the
method and significant increases of the absorptance for the optimal random structures.
We also examine the convergence of the stochastic gradient descent algorithm theoret-
ically and prove that the numerical method is convergent under certain assumptions
for the random interfaces.
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1 Introduction

Thin-film silicon solar cell is an attractive photovoltaic device because it attains a small
thickness, which results in significant savings of material and energy during the fabrica-
tion. The cell consists of hydrogenated amorphous silicon (a-Si:H) as the absorbing layer,
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Figure 1: A schematic plot of thin-film solar cells.

sandwiched between the transparent conductive oxide (TCO) layers for conducting the
electric current. Figure 1 shows the structure of a typical thin-film solar cell, wherein
the glass substrate on the top allows the incoming light to enter the cell and the highly
reflective aluminum contact layer at the bottom enhances the absorption of light within
the cell.

The a-Si:H layer in the thin-film solar cell is sufficiently absorptive at smaller optical
wavelengths but poorly absorptive at larger wavelengths (typically >600 nm), which is
responsible for the low overall efficiency of the cell. One way to increase the absorption
within the solar cell and enhance its performance is to engineer the structure by texturing
the interfaces between the different layers in a random manner [1, 10, 11, 13, 18, 22]. The
randomly textured surfaces lower the reflection losses at the entrance facet and scatter
the light, thereby increasing the optical path of each photon in the solar cell. In realistic
fabrication, the surfaces of the TCO layers in Figure 1 are textured randomly, which is
achieved at low cost by controlling the deposition parameter of TCO films sputtered on
substrates [16]. We would also like to point out several other ways to increase the ab-
sorption efficiency of solar cells, such as anti-reflection coating, dielectric gratings, and
plasmonic nanoparticles [3, 6, 9, 12, 19], although these techniques may be costly in fabri-
cation.

The design and optimization of random surfaces in thin-film solar cells are mostly
performed by the ad hoc procedures, where one computes the absorptance of the cell for
chosen statistical parameters and obtains the optimal parameters from the comparison
of the computed absorptance values [10, 11, 13, 18]. Such ad hoc schemes are compu-
tationally inefficient and the optimal solutions heavily depend on the set of statistical
parameters being chosen. To provide a systematic computational framework, in [4] we
formulate the optimal design of random surface textures as a random PDE-constrained
problem and apply the gradient-based algorithm to solve the optimization problem. The
optimization problem seeks to maximize the mean absorptance function for the solar
cells by sampling random surfaces in the appropriate probability space. We employ the
Monte-Carlo method for sampling the probability space in [4] and apply the adjoint state
method for computing the gradient at each sample. The optimal random textures give
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rises to significant absorption enhancement, with the photon absorptance much higher
than the existing random textures.

Albeit being able to provide optimal random surface textures, the numerical algo-
rithm based on the Monte-Carlo sampling and the adjoint state method is computation-
ally expensive, due to the largeness of the samples needed in computing the gradient
average and the necessity to solve the underlying governing PDEs to obtain the gradient
for each sample. In this work, we adopt the stochastic gradient descent method, which is
a key ingredient of machine learning algorithms (cf. [7]), to solve the stochastic optimiza-
tion problems. The new algorithm can obtain the statistical parameters of the optimal
random textures, and its computational cost is significantly lower compared to the full
gradient descent approach. We show that the numerical method is convergent under
certain assumptions on the step sizes of the iterative algorithm and the random inter-
faces. In addition, in contrast to the optimization of one single random interface in [4],
we consider the optimization of several random interfaces as well as the optimization of
the random boundary for the solar cell. We also investigate more sophisticated configu-
rations when optimization is performed over a frequency band or with multiple incident
angles, which are computationally formidable if one attempts to solve by the full gradient
method developed in [4].
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Figure 2: Schematic plot of the multi-layered medium in the reference periodic cell with 0< x1 <Λ. The layers from the
bottom to the top are D1,D2,··· ,D`. The boundary at the bottom is given by Γ1 and the interface between the two layers
Dj−1 and Dj is given by Γj (j=2,··· ,`).

More specifically, we consider the multi-layered structure in R2 as depicted in Figure
2, which consists of several layers D1,D2,··· ,D` from the bottom to the top. The bound-
ary at the bottom of the structure Γ1 and the interface Γj (j = 2,··· ,`) between the two
layers Dj−1 and Dj are textured randomly. For each random sample ζ, the interface Γj

is represented as Γj(ζ) := {(x1,x2) | x2 = f j(ζ,αj;x1)}, wherein αj ∈Rd represents the sta-
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tistical parameters of the interface and f j is the profile function for the interface. The
optimization problem is to solve for the optimal statistical parameters {αj}`j=1 such that
the overall absorbtance within these layers is maximized. The problem setup will be
discussed in more details in Section 2.

The rest of the paper is organized as follows. In Section 2 we introduce the mathe-
matical model for the optical scattering problem by random rough surfaces and formu-
late the optimal design problems. The shape derivatives and the gradient of the objective
function are derived by the adjoint state method in Section 3. We present the stochastic
gradient descent method for the optimization problems and examine the convergence of
the method in Section 4. Finally, various numerical experiments are given in Section 5 to
demonstrate the efficiency of the numerical method.

2 Mathematical formulation of the optimal design problems

2.1 Mathematical model for optical scattering problem by random surfaces

We assume that the whole structure is periodic along the x1 direction with the period Λ,
considering that the solar cells are usually arranged periodically in fabrication. For each
random sample ζ and for j=1,2,··· ,`−1, we let

Dj(ζ) :={(x1,x2) : 0< x1<Λ1, f j(ζ;x1)< x2< f j+1(ζ;x1)} (2.1)

be the jth layer in the reference period shown in Figure 2, and

D`(ζ) :={(x1,x2) : 0< x1<Λ1,x2> f`(ζ;x1)} (2.2)

be the domain on the top. For each j, the interface profile function satisfies

f j(ζ;x1+Λ)= f j(ζ,x1) for−∞< x1<∞,

and f j(ζ;x1) is a stationary random process in the reference period with 0< x1 <Λ. This
will be elaborated in Section 2.2 .

The relative permittivity function εr attains the value εr,j in each layer Dj. We consider
the transverse electric (TE) polarization for the optical wave, in which the electric field
attains the form E = (0,0,u). The structure is illuminated by a time-harmonic incident
plane wave ui = eik0q`(sinθ,−cosθ)·x, where k0 be the free-space wavenumber, θ∈ (−π

2 , π
2 ) is

the incident angle and q` :=
√

εr,` represents the refractive index in D`. For simplicity of
notation, here and henceforth, we set the wavenumber in D` as k`= k0q` and express the
incident wave as ui = ei(τx1−ρx2), in which τ = k`sinθ and ρ= k`cosθ is the wavenumber
in the horizontal and vertical direction respectively. The total field u after the scattering
consists of the incident wave ui and the diffracted wave us. For each sample ζ ∈Ω, the
total field u satisfies

∆u(ζ;x)+k2
0εr,ju(ζ;x)=0 for x∈Dj(ζ), j=1,2,··· ,`. (2.3)
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Along the interfaces Γj(ζ)={(x1,x2) |0< x1<Λ1,x2= f j(ζ;x1)} for j=2,··· ,`, there hold

u+(ζ;x1, f j(ζ,x1)) = u−(ζ;x1, f j(ζ,x1)), (2.4)
∂νu+(ζ;x1, f j(ζ,x1)) = ∂νu−(ζ;x1, f j(ζ,x1)), (2.5)

which follow from the continuity of the electric field and magnetic field. In the above,
ν denotes the unit normal vector along Γj pointing toward Dj, u± and ∂νu± denote the
limits of u and ∂νu from above and below the surface, respectively. In addition, due to pe-
riodicity of the medium along the x1 direction, we impose the quasi-boundary condition
on the boundary walls of the periodic cell (cf. [2]):

u(ζ;Λ,x2)= eiτΛu(ζ;0,x2) for x2> f1(ζ;0), (2.6)

in which τ is the horizontal wavenumber defined above. For a perfectly conducting
contact layer D1 such as aluminum depicted in Figure 1), there holds

u(ζ;x1, f1(ζ;x1))=0, 0< x1<Λ, (2.7)

along the boundary Γ1. This implies that the optical light is totally reflected to the cell
and no light is transmitted through Γ1.

By virtue of the quasi-periodicity boundary condition, the solution to (2.3) - (2.7) can
be expressed as a sum of a Fourier series. In particular, in the domain D`, the diffracted
field us attains the so-called Rayleigh expansion (cf. [2, 8]):

us(ζ;x1,x2)=
∞∑

n=−∞

ûs
n(ζ;b) eiκnx1+iηn(x2−b) for x2≥b, (2.8)

where b> max
−∞<x1<∞

f`(x1) is a constant, κn :=τ+
2πn

Λ
for n∈Z, and

ηn =


√

k2
`−κ2

n, k`>κn,

i
√

κ2
n−k2

`, k`<κn.

(2.9)

The Fourier mode eiκnx1+iηn(x2−b) is called the nth diffraction order and the corresponding
Fourier coefficient ûs

n(ζ;b) is defined by

ûs
n(ζ;b)=

1
Λ

∫ Λ

0
us(ζ;x1,b)e−iκnx1 dx1. (2.10)

Here we assume that κn 6=k` to exclude resonances. Then we can introduce the Dirichlet-
to-Neumann map T on the line x2=b as

∂us

∂x2
(ζ;x1,b)=

∞∑
n=−∞

iηnûs
n(ζ;b)eiκnx1 =: T[us(ζ;x1,b)]. (2.11)
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Since u=ui+us, there holds

∂u
∂x2

(ζ;x1,b)=T(u(ζ;x1,b))+g, (2.12)

where g=−2iρeiτx1−iρb.

Let Γ(ζ)=
⋃̀
j=2

Γj(ζ) and

D(ζ) :={(x1,x2) : 0< x1<Λ1, f1(ζ;x1)< x2<b}.

In light of (2.3) - (2.7) and (2.12), for each sample ζ, the total field u satisfies the following
boundary value problem in the domain D:

∆u(ζ;·)+k2
0εru(ζ;·)=0 in D(ζ)\Γ(ζ),

u(ζ;Λ,x2)= eiτΛu(ζ;0,x2), f1(ζ;0)< x2<b,
u(ζ;x1, f1(ζ;x1))=0, 0< x1<Λ,
∂u
∂x2

(ζ;x1,b)=T(u(ζ;x1,b))+g, 0< x1<Λ.

(2.13)

In addition, u satisfies the conditions (2.4) - (2.5) along the interfaces.

2.2 Representation of random surfaces

For each random interface Γj, we assume that its profile function f j= f j(ζ;x1) is a station-
ary random process for x1 ∈ [0,Λ], with a continuous and bounded covariance function
Cj(x1, x̃1)= cj(x1− x̃1). We consider the Gaussian type covariance function with

cj(x1− x̃1)=
(

α
(1)
j

)2
exp

(
−|x1− x̃1|2/

(
α
(2)
j

)2
)

,

where α
(1)
j is the root mean square and α

(2)
j is the correlation length of the surface Γj(ζ)

satisfying 0< α
(2)
j �Λ. Such a covariance function is usually used for the modeling of

rough surfaces [17].
By the Karhunen–Loève expansion (cf. [14]), the random process f j(ζ;x1) can be rep-

resented as

f j(ζ;x1)= f a
j +

∞∑
p=1

√
λjp ξ jp ϕjp(x1),

where f a
j is the average height of f j, ξ jp are mutually uncorrelated random variables

with zero mean and unit covariance, λjp and ϕjp (p = 1,2,··· ,) are the eigenvalues and
eigenfunctions of covariance operator

[Kϕ](x1) :=
∫ Λ

0
cj(x1− x̃1) ϕ(x̃1)dx̃1.
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Since the covariance function cj(x1) is even, we expand it as

cj(x1)=
(

α
(1)
j

)2

 ĉj0

2
+

∞∑
p=1

ĉjp cos
(

2pπx1

Λ

) for x1∈ [0,Λ],

where ĉj0, ĉj1, ĉj2, ··· , are the Fourier cosine expansion coefficients of the function exp
(
−x2

1/
(

α
(2)
j

)2
)

.

It can be shown that the covariance operator attains the eigenvalues

λjp =

(
α
(1)
j

)2
Λ ĉjp

2
, p=0,1,2,··· .

The corresponding eigenfunctions are

ϕjp(x1)=



√
1
Λ

, p=0,√
2
Λ

cos
(

2pπx1

Λ

)
, p>1 and even,√

2
Λ

sin
(

2pπx1

Λ

)
, p>1 and odd,

for all j. Hence the Karhunen–Loève representation of the random process f j(ζ;x1) is
given by

f j(ζ;αj;x1)= f a
j +
√

λj0 ξ0(ζ)

√
1
Λ

+
∞∑

p=1

√
λjp

[
ξs

p(ζ)

√
2
Λ

sin
(

2pπx1

Λ

)
+ξc

p(ζ)

√
2
Λ

cos
(

2pπx1

Λ

)]
,

(2.14)

where ξ0, ξs
p and ξc

p are mutually uncorrelated random variables with zero mean and

unit covariance. αj =(α
(1)
j ,α(2)

j ) represents the statistical parameters of the interface. We
express the explicit dependence of f j on αj here and afterwards when necessary. In par-
ticular, when f j= f j(ζ;x1) is a stationary Gaussian process, ξ0, ξs

p and ξc
p are independent

and identically distributed Gaussian random variables with zero mean and unit covari-
ance.

A finite-term Karhunen-Loève expansion is used in the computation so that the re-
maining terms are sufficiently small. Since the eigenvalues{λjp}∞

j=0 converge to 0 fast
for the given smooth kernel c(x1−x̃1), such an approximation yields high-order accuracy
with a small number of terms in the expansion. Therefore, here and henceforth, for sim-

plicity we use a finite-term approximation of (2.14) with p≤P0. By letting λjp=
(

α
(1)
j

)2
λjp
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with λjp =
Λĉjp

2
, we express the profile of the random surface by

f j(ζ;αj;x1)= f a
j +α

(1)
j · f̄ j(ζ;α(2)

j ;x1), (2.15)

where

f̄ j(ζ;α(2)
j ;x1) =

√
λj0 ξ0(ζ)

√
1
Λ
+

P0∑
p=1

√
λjp

[
ξs

p(ζ)

√
2
Λ

sin
(

2pπx1

Λ

)

+ξc
p(ζ)

√
2
Λ

cos
(

2pπx1

Λ

)]
, (2.16)

and it is independent of the root mean square α
(1)
j . For each random sample, f j(ζ;αj,·) is

a smooth function and depends continuously on the statistical parameters αj.

2.3 Optimal design problems

For each sample ζ∈Ω, in light of the Rayleigh expansion (2.8), the diffracted field can be
rewritten as

us(ζ;·)=
∞∑

n=−∞

rn(ζ) eiκnx1+iηnx2 ,

where the reflection coefficient rn(ζ)= ûs
n(ζ;b)e−iηnb, and ûs

n are the Fourier coefficients of
the diffracted field us as defined in (2.10). Since u=ui+us, rn(ζ) can also be written as

rn(ζ)=

{
ûn(ζ;b)e−iηnb, n 6=0

ûn(ζ;b)e−iρb−e−2ik`b, n=0,
(2.17)

where ûn(ζ;b) are the Fourier coefficients of the total field u(ζ;·) on x2=b.
Let N :=

{
n∈Z | k2

`−κ2
n >0

}
be the set of indices for all propagating modes in the

Rayleigh expansion. The goal of optimal design is to trap the energy in the layers D1,··· ,D`−1
as much as possible. In other words, we aim to minimize the energy that is being reflected
to D`. Let α=(α1,··· ,α`)

> be the design variables, where αj=(α
(1)
j ,α(2)

j ) are the statistical
parameters of the interface Γj for j= 1,··· ,`. Using the reflection coefficients above, the
reflectivity associated with the optical structure for each sample ζ is defined by

R(ζ;α)=
∑
n∈N

ηn

η0
|rn(ζ)|2 ,

where ηn is defined in (2.9). The mean reflectivity is

E[R(ζ;α)] :=
∫

Ω

∑
n∈N

ηn

η0
|rn(ζ)|2 dP(ζ), (2.18)
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in which Ω and P denotes the random sample space and the probability measure, respec-
tively.

Let Q(α) := E[R(ζ;α)], the optimal design problem for the fixed wavenumber k0 is
to minimize the mean reflectivity Q(α) by solving the following stochastic optimization

problem over an admissible set Uα :=
(
(0,αmax

1 )×(0,αmax
2 )

)`
:

Problem (I) min
α∈Uα

Q(α). (2.19)

Since the solar frequency spectrum ranges from 300nm to about 3000nm, and the angle
of the incidence for the incoming light changes during the daytime, it is also important to
investigate the corresponding optimization problems in these realistic scenarios. In the
case of optimal design over a frequency band, assuming that the wavelength λ for the
incident wave is within the range [λmin,λmax], the corresponding stochastic optimization
problem is cast as

Problem (II) min
α∈Uα

Q(α), where Q(α) :=E

[∫ λmax

λmin

R(ζ;α,λ)dλ

]
. (2.20)

Note that in this configuration, the refractive index εr(λ;x) is a function of the wavelength
λ. Finally, the optimal design problem with multiple incident angles with θ∈ [θmin,θmax]
is formulated as follows:

Problem (III) min
α∈Uα

Q(α), where Q(α) :=E

[∫ θmax

θmin

R(ζ;α,θ)dθ

]
. (2.21)

Both Problem (II) and (III) are computationally more expensive than Problem (I) due
to the necessity to sample over the frequency band or at different incident angles. It is
computationally formidable by using the gradient descent algorithm in [4] directly.

3 The computation of the gradient DαR(ζ;α)

To perform the optimization, one needs to compute the gradient of the objective function.
In this section, we derive the gradient DαR(ζ;α) of the reflectivity R(ζ;α) at each sample.
The shape derivatives are obtained by analyzing the sensitivity of the reflectivity R upon
the perturbation of the interface/surface. Note that Γ1 at the bottom is the boundary of
the structure, while Γ2,··· ,Γ` are interfaces between two layers. Thus the derivations of
the shape derivatives are different for the boundary Γ1 and the rest of interfaces. We
present the shape derivative formulas for Γ1 and Γj (j≥ 2) respectively in the following
theorem and give the detailed proof in Section 3.2.1 and 3.2.2. The readers are referred
to [21] for analysis of derivatives in various shape optimizations.
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Theorem 3.1. Denote Dαj :=

 ∂

∂α
(1)
j

,
∂

∂α
(2)
j

 for j=1,2,··· ,`. For each sample ζ,

Dα1 R(ζ;α)=
2
Λ

∑
n∈N

ηn

η0
Re
[
(ûn(ζ;b)−ane−2ik`b+iρb)·

∫ Λ

0

(
∂ū
∂ν
· ∂u∗n

∂ν
ν2

)
·Dα1 f1 dx1

]
, (3.1a)

and

Dαj R(ζ;α)=
2k2

0
Λ

∑
n∈N

ηn

η0
Re
[
(ûn(ζ;b)−ane−2ik`b+iρb)·(εr,j−εr,j−1)

·
∫ Λ

0
[ūu∗n]|(x1, f j) ·Dαj f j dx1

]
, j=2,··· ,`. (3.1b)

Here a0 =1 and an =0 if n 6=0, and ν=(ν1,ν2)> is the unit normal vector pointing to the
interior of D along Γ1. u is the solution to the forward problem (2.13) and u∗n solves the
following adjoint problem

∆u∗n(ζ;·)+k2
0εru∗n(ζ;·)=0 in D(ζ)\Γ(ζ),

u∗n(ζ;Λ,x2)= eiτΛu∗n(ζ;0,x2), f1(ζ;0)< x2<b,
u∗n(ζ;x1, f1(ζ;x1))=0, 0< x1<Λ,
∂x2 u∗n(ζ;x1,b)=T∗(u(ζ;x1,b))+eiκnx1 .

(3.2)

In the above theorem, [u∗nū]|(x1, f j) denotes the restriction of u∗nū to the surface Γj(ζ).
T∗ is the adjoint operator of T such that

〈Tu,v〉= 〈u,T∗v〉,

where 〈·,·〉 stands for the inner product over the function space L2(0,Λ).

3.1 Proof of formula (3.1a)

Let H1
τ(D) :={u∈H1(D) : u=0 on Γ1,u(Λ,x2)= eiτΛu(0,x2)}, where the function space

H1(D)={u(x) :
(∫

D
|u(x)|2 dx

) 1
2

<∞,
(∫

D
|∇u(x)|2 dx

) 1
2

<∞}.

We introduce the bilinear form

a(u,w) :=
∫

D
∇u·∇w̄−k2

0εruw̄dx−〈Tu,w〉 foru,w∈H1
τ(D).

Here 〈·,·〉 stands for the inner product over the function space L2(0,Λ). Then each ran-
dom sample ζ, the weak solution u(ζ;·)∈H1

τ(D) for the boundary value problem (2.13)
satisfies

a(u(ζ;·),w)= 〈g,w〉 for allw∈H1
τ(D). (3.3)
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For each random sample, define the mapping S : α1=
(

α
(1)
1 ,α(2)

1

)
→u(ζ;x1,b), where u

is the solution to boundary value problem (2.13). We let Dα1 S :=

(
∂S

∂α
(1)
1

,
∂S

∂α
(2)
1

)
, in which

∂S

∂α
(j)
1

= lim
δ→0

S(α(1)+δej)−S(α(1))

δ
for j=1,2,

and ej is the unit vector.

Lemma 3.2. The derivative Dα1 S exits and
∂S

∂α
(j)
1

=uj0(ζ;x1,b) for j=1,2, where uj0 solves



∆uj0(ζ;·)+k2
0εruj0(ζ;·)=0 in D(ζ)\Γ(ζ),

uj0(ζ;0,x2)= eiτΛuj0(ζ;Λ,x2),

uj0(ζ;x1, f1(x1))=−
∂ f1

∂α
(j)
1

∂u
∂ν

ν2; 0< x1<Λ,

∂x2 uj0(ζ;x1,b)=T(uj0(ζ;x1,b)),

(3.4)

ν = (ν1,ν2)> is the unit normal vector pointing to D along Γ1, and u is the solution to
boundary value problem (2.13).

Proof. We only provide the proof for
∂S

∂α
(1)
1

, and the proof for
∂S

∂α
(2)
1

is similar. Let α
(1)
1

be perturbed by a small number δ, then the new root mean square is
(

α
(1)
1

)δ
:= α

(1)
1 +δ

and the new boundary becomes Γδ
1 := {(x1,x2) : x2 = f δ

1 (ζ;x1)}, where f δ
1 = f1+δ· ∂ f1

∂α
(1)
1

+

O(δ2). For simplicity of the notation, we introduce the vector function W(x)∈C2
0(Γ1;R2)

such that δ·W(x) := [0, f δ
1 (x1)− f1(x1)]

> for x∈ Γ1, then the perturbed boundary can be
expressed as Γδ

1={x+δ·W(x) : x∈Γ1}.
We denote the domain after the perturbation by Dδ. The perturbed total field uδ

satisfies 
∆uδ(ζ;·)+k2

0εruδ(ζ;·)=0 in Dδ(ζ)\Γ(ζ),
uδ(ζ;Λ,x2)= eiτΛuδ(ζ;0,x2),
uδ(ζ;x1, f1(ζ;x1))=0; 0< x1<Λ,
∂x2 uδ(ζ;x1,b)=T(uδ(ζ;x1,b))+g.

(3.5)

The weak solution uδ for the above boundary value problem satisfies

aδ(uδ(ζ;·),wδ)= 〈g,wδ〉 (3.6)
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for all wδ∈H1
0(Dδ), where

aδ(uδ(ζ;·),wδ)=

∫
Dδ
∇uδ(ζ;·)·∇wδ−k2

0εruδ(ζ;·)wδ dx−〈Tuδ(ζ;·),wδ〉.

Let us extend the definition of W(x) to the closure of the whole domain D such that
W ∈C2(D̄;R2) and W(x) = 0 on the boundary x2 = b. Correspondingly, we introduce a
map ψ from D to Dδ by letting x =ψ(y) = y+W(y) for y∈D. The inverse map of ψ is
denoted as φ(x), which maps Dδ to D. Let ũδ(y)=uδ(ψ(y)), w̃δ =wδ(ψ(y)), then ũδ and

w̃ are defined on D. It is straightforward to show that
∂uδ

∂x1
=

2∑
m=1

∂ũδ

∂ym

∂φm

∂x1
, where φ1,φ2

are the two components of the mapping φ. By change of variables, we obtain

aδ(uδ(ζ;·),wδ)=

∫
D

[ 2∑
m,n=1

bmn
∂ũδ(ζ;·)

∂ym

∂w̃δ

∂yn
−k2

0εrũδ(ζ;·)w̃δ
]

Jdy−〈Tũδ(ζ;·),w̃δ〉

where J=det∇ψ, bmn =
2∑

i=1

∂φm

∂xi

∂φn

∂xi
. Define a new bilinear form

ãδ(ũδ,w)=

∫
D

[ 2∑
m,n=1

bmn
∂ũδ

∂ym

∂w
∂yn
−k2

0εrũδw
]

Jdy−〈Tũδ,w〉

for ũδ,w∈H1
τ(D). Then (3.6) is equivalent to finding ũδ∈H1

τ(D) such that

ã(ũδ(ζ;·),w)= 〈g,w〉 (3.7)

for all w∈H1
τ(D).

From (3.3) and (3.7), it is seen that ũδ(ζ;·)−u(ζ;·) satisfies

a(ũδ(ζ;·)−u(ζ;·),w)=−
(
ãδ(ũδ(ζ;·),w)−a(ũδ(ζ;·),w)

)
. (3.8)

For the right-hand side,

ãδ(ũδ(ζ;·),w)−a(ũδ(ζ;·),w)=

∫
D

[ 2∑
m,n=1

bmn
∂ũδ(ζ;·)

∂ym

∂w
∂yn
−k2

0εrũδ(ζ;·)w
]

Jdy

−
∫

D
∇ũδ(ζ;·)·∇w̄−k2

0εrũδ(ζ;·)w̄dy.

(3.9)

Let V(x) be the leading-order of the vector function W(x) and it is independent of δ. Then
it can be calculated that the Jacobian J=1+δ∇·V+O(δ2), and (bmn)J= I−δ(b̃mn)+O(δ2),
where I is the 2 × 2 identity matrix and

b̃mn =∇V+(∇V)T−(∇·V)I. (3.10)
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Therefore,

a(ũδ(ζ;·)−u(ζ;·),w)=δ

∫
D

2∑
m,n=1

b̃mn
∂ũδ(ζ;·)

∂ym

∂w
∂yn

+k2
0εr(∇·V)u(ζ;·)wdy+O(δ2). (3.11)

Denote u′(ζ;·)= lim
δ→0

ũδ(ζ;·)−u(ζ;·)
δ

. Then u′(ζ;·) satisfies the following variational for-

mulation:

a(u′(ζ;·),w)=

∫
D

2∑
m,n=1

b̃mn
∂ũδ(ζ;·)

∂ym

∂w
∂yn

+k2
0εr(∇·V)u(ζ;·)wdy. (3.12)

By the formula (3.10), we have

2∑
m,n=1

b̃mn
∂u(ζ;·)

∂ym

∂w
∂yn

=∇(V ·∇w̄)·∇u(ζ;·)+∇(V ·∇u(ζ;·))·∇w̄

−∇·[(∇u(ζ;·)·∇w̄)V].

By the Green’s formula and the boundary condition u(ζ;·)=w=0 on Γ1, there holds∫
Γ1

(V ·∇w̄)
∂u(ζ;·)

∂ν
−(∇u(ζ;·)·∇w̄)(V ·ν)ds=0.

Therefore, (3.12) can be reduced to

a(u′(ζ;·),w)=

∫
D
−∇(V ·∇w̄)·∇u(ζ;·)+∇(V ·∇u(ζ;·))·∇w̄+k2

0εr(∇·V)u(ζ;·)wdy

+

∫
Γ1

(V ·∇w̄)
∂u(ζ;·)

∂ν
−(∇u(ζ;·)·∇w̄)(V ·ν)ds

=

∫
D

k2
0εru(ζ;·)(V ·∇w̄)+∇(V ·∇u(ζ;·))·∇w̄+k2

0εr(∇·V)u(ζ;·)wdy

=

∫
D
∇(V ·∇u(ζ;·))·w̄−k2

0εr(V ·∇u(ζ;·))w̄dy+
∫

D
k2

0εr∇·(u(ζ;·)w̄V)dy.

(3.13)

Since
∫

D k2
0εr∇·(u(ζ;·)w̄V)dy=0 by the divergence theorem, we obtain

a(u′(ζ;·),w)=

∫
D
∇(V ·∇u(ζ;·))·∇w̄−k2

0εr(V ·∇ū(ζ;·))w̄dy for any w∈H1
τ(D)∩H2(D).

This implies that u′ is a weak solution of the following boundary value problem:
∆u′(ζ;·)+k2

0εru′(ζ;·)=(∆+k2
0εr)(V−∇u) in D(ζ)\Γ(ζ),

u′(ζ;Λ,x2)= eiτΛu′(ζ;0,x2),
u′(ζ;x1, f1(x1))=0; 0< x1<Λ,
∂x2 u′(ζ;x1,b)=T(u′(ζ;x1,b)).
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Let u10=u′−V ·∇u, then u10=u′ on x2=b, and u10 satisfies

∆u10(ζ;·)+k2
0εru10(ζ;·)=0 in D(ζ)\Γ(ζ),

u10(ζ;Λ,x2)= eiτΛu10(ζ;0,x2),

u10(ζ;x1, f1(x1))=
∂ f1

∂α
(1)
1

∂u
∂ν

ν2; 0< x1<Λ,

∂x2 u10(ζ;x1,b)=T(u10(ζ;x1,b)).

This completes the proof of Lemma 3.2.

Next, let us prove formula (3.1a). From the definition of the reflectivity R(ζ;α) =∑
n∈N

ηn

η0
|rn(ζ)|2 , we have

∂R(ζ;α)

∂α
(1)
1

=2
∑
n∈N

ηn

η0
Re
[
rn

¯∂rn

∂α
(1)
1

]
,

where

rn(ζ)=

{
ûn(ζ;b)e−iηnb, n 6=0

ûn(ζ;b)e−iρb−e−2ik0q`b, n=0.

From a direct calculation, it follows that

∂rn(ζ)

∂α
(1)
1

=
∂ûn(ζ;b)

∂α
(1)
1

e−iηnb.

Applying Lemma 3.2, we obtain
∂u(ζ;b)

∂α
(1)
1

= lim
δ→0

uδ(ζ;b)−u(ζ;b)
δ

=u01(ζ;b). Thus

rn
¯∂rn

∂α
(1)
1

=


ûn(ζ;b)· 1

Λ

∫ Λ

0
eiκnx1 u01(ζ;x1,b)dx1, n 6=0(

ûn(ζ;b)−e−2ik0q`b+iρb)· 1
Λ

∫ Λ

0
eiκnx1 u01(ζ;x1,b)dx1, n=0.

(3.14)

Multiplying the differential equation in the adjoint problem (3.2) by u01(ζ;·) and multi-
plying the complex conjugate of the differential equation in (3.4) by u∗n(ζ;·), and integrat-
ing over the domain Dj for j=1,··· ,`, we have∫

Dj

(∆u∗n(ζ;·)+k2
0εru∗n(ζ;·))u01(ζ;·)−u∗n(ζ;·)(∆u01(ζ;·)+k2

0εru01(ζ;·))dx=0; j=1,··· ,`.
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Applying the Green’s formula for the above equations and adding them together, we
obtain

−
∫ Λ

0
([0,

∂ f1

∂α
(1)
1

]> ·ν)
[

∂u(ζ;·)
∂ν

· ∂u∗n(ζ;·)
∂ν

]
dx1

+

∫ Λ

0
u01(ζ;·)

(
T∗(u∗n(ζ;·)+eiκnx1)

)
−u∗n(ζ;·)T(u01(ζ;·))dx1=0,

where we have used the boundary conditions in the boundary value problems (3.2) and
(3.4).

Since T∗ is the adjoint operator of T, there holds

∫ Λ

0
eiκnx1 u01(ζ;x1,b)dx1=

∫ Λ

0

(
∂u(ζ;·)

∂ν
· ∂u∗n(ζ;·)

∂ν
ν2

)
∂ f1

∂α
(1)
1

dx1.

Substituting into (3.14) leads to

∂R

∂α
(1)
1

=
2
Λ

∑
n∈N

ηn

η0
Re
[
(ûn(ζ;b)−ane−2ik0q`b+iρb)·

∫ Λ

0

(
∂u(ζ;·)

∂ν
· ∂u∗n(ζ;·)

∂ν
ν2

)
∂ f1

∂α
(1)
1

dx1

]
.

Therefore,

Dα1 R=
2
Λ

∑
n∈N

ηn

η0
Re
[
(ûn(ζ;b)−ane−2ik0q`b+iρb)·

∫ Λ

0

(
∂u(ζ;·)

∂ν
· ∂u∗n(ζ;·)

∂ν
ν2

)
·Dα1 f1 dx1

]
.

3.2 Proof of formula (3.1b)

To prove (3.1b), we need to derive the perturbation of the reflectivity δR due to the
perturbation of the interface by δ f j induced by a small perturbation of α

(1)
j or α

(2)
j for

j = 2,··· ,`. When the interface Γj is perturbed as f δ
j := f j+δ f j, the permittivity ε in Dj

becomes εδ
r :=εr+δεr. It is observed that for any test function v∈L2(D), the inner product

(v,δεr) :=
∫

D
v(x)δεr(x)dx=

∫
symdiff(Dj,Dδ

j )
v(x)δεr(x)dx.

Here Dj and Dδ
j are the layers with the interfaces f j and f δ

j , respectively, and the symmet-
ric difference of the two sets Dj and Dδ

j is given by

symdiff(Dj,Dδ
j )=(Dj∪Dδ

j )\(Dj∩Dδ
j ).
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Since the relative permittivity of the domain Dj−1 and Dj are εr,j−1 and εr,j, respectively,
the above inner product can be simplified as

(v,δεr)=

∫ Λ

0
v(x1, f j(x1)) (εr,j−1−εr,j)·δ f j dx (3.15)

for an infinitesimal δ f .
Let δu denote the perturbation of the total field. As a result of perturbation analysis,

δu satisfies the following equations:

∆δu(ζ;·)+k2
0εrδu(ζ;·)=−k2

0δεru(ζ;·) in D(ζ)\Γ(ζ),
δu(ζ;Λ,x2)= eiτΛδu(ζ;0,x2), 0< x2<b,
δu(ζ;x1, f1(ζ;x1))=0, 0< x1<Λ,
∂δu
∂x2

(ζ;x1,b)=T(δu(ζ;x1,b)) 0< x1<Λ.

(3.16)

Multiplying the differential equation in the adjoint problem (3.2) by δu(ζ;·) and the
differential equation in (3.16) by u∗n(ζ;·), and integrating over the domain Dj for j=1,··· ,`,
it follows that∫

Dj

(∆u∗n(ζ;·)+k2
0εru∗n(ζ;·))δu(ζ;·)−u∗n(ζ;·) (∆δu(ζ;·)+k2

0εrδu(ζ;·))dx

=

∫
Dj

u∗n(ζ;·)k2
0δεru(ζ;·)dx, j=1,··· ,`.

Applying the Green’s formula on the left-hand side and adding all the equations together
yields

∫
Γj(ζ)

(∂νu∗n(ζ;·))−(δu(ζ;·))−−(u∗n(ζ;·))−(∂νδu(ζ;·))−ds

+

∫
Γj(ζ)

(u∗n(ζ;·))+(∂νδu(ζ;·))+−(∂νu∗n(ζ;·))+(δu(ζ;·))+ds

+

∫ Λ

0
eiκnx δu(ζ;x1,b)dx1= k2

0

∫
D

δ̄εr
¯u(ζ;·)u∗n(ζ;·)dx,

where we have used the boundary conditions in (3.2) and (3.16). By the continuity con-
ditions along the interface Γj(ζ), this can be further reduced to the following:

∫ Λ

0
eiκnx δu(ζ;x1,b)dx1= k2

0

∫
D

δ̄εr
¯u(ζ;·)u∗n(ζ;·)dx. (3.17)
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Now,

Rδ(ζ;α) =
∑
n∈N

ηn

η0
|rn+δrn|2

=
∑
n∈N

ηn

η0

{
|rn|2+2Re[rnδrn]+|δrn|2

}
.

From the definition of (2.17), it follows that δrn = O(δu) where δu is the perturbation
of u. Due to the perturbation analysis of the boundary value problem (2.13), we have
δu=O(δεr) and δεr =(εr,1−εr,2)·δ f j. Then it follows |δrn|2=O((δ f j)

2). We have

Rδ(ζ;α)=R(ζ;α)+2
∑
n∈N

ηn

η0
Re[rnδrn]+O((δ f j)

2).

The perturbation δR :=Rδ−R is given by

δR=2
∑
n∈N

ηn

η0
Re[rnδrn]+O((δ f j)

2). (3.18)

For each term rnδrn, by virtue of (2.17), it follows that

rnδrn =


ûn(ζ;b)· 1

Λ

∫ Λ

0
eiκnx1 δu(ζ;x1,b)dx1, n 6=0(

ûn(ζ;b)−e−2ik`b+iρb)· 1
Λ

∫ Λ

0
eiκnx1 δu(ζ;x1,b)dx1, n=0.

(3.19)

Therefore, substituting (3.17) into (3.19) yields

rnδrn =


ûn(ζ;b)· k

2
0

Λ

∫
D

δ̄εrūu∗n dx, n 6=0,(
ûn(ζ;b)−e−2ik`b+iρb)· k2

0
Λ

∫
D

δ̄εrūu∗n dx, n=0.
(3.20)

As such

δR=
2k2

0
Λ

∑
n∈N

ηn

η0
Re
[
(ûn(ζ;b)−αne−2ik`b+iρb)·

∫
D

δ̄εrūu∗n dx
]
+O(δ f 2

j ).

Using (3.15), we arrive at

δR=
2k2

0
Λ

∑
n∈N

ηn

η0
Re
[
(ûn(ζ;b)−αne−2ik`b+iρb)·(εr,1−εr,2)·

∫ Λ

0
[ūu∗n]|(x1, f j) ·δ f j dx1

]
+O(δ f 2).

The desired formula (3.1b) for Dαj R (j=2,··· ,`) then follows by the chain rule.
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4 The stochastic gradient descent method for the optimal design
problems

4.1 The computational algorithm

To minimize Q(α)=E[R(ζ;α)], the full gradient descent method applies the iteration

α(n+1)=α(n)−hn ·DαQ(α(n)), (4.1)

where hn is the step length and DαQ(α(n)) is the gradient of Q(α) with respect to α. If the
Monte Carlo method is used to sample the probability space, then

DαQ(α(n))=E
[

DαR(ζ;α(n))
]
≈ 1

MC

MC∑
m=1

DαR(ζm;α(n)).

Usually the sampling size MC needs to be very large to obtain reasonably accurate ap-
proximation, and the computation of each DαR(ζm;α(n)) requires solving the boundary
value problem (2.13) and the adjoint problems (3.2). Therefore, computing the full gradi-
ent DαQ(α(n)) is very expensive during the iteration process.

Here we employ the stochastic gradient descent method to solve the optimization
problems (I)-(III). The stochastic gradient descent method plays a significant role in solv-
ing large-scale modern machine learning problems and it is computationally efficient
when the data set is large [7]. Its application for minimizing the objective function Q(α)
is given by

α(n+1)=α(n)−hn ·DαR(ζn;α(n)). (4.2)

For each iteration n, the sample ζn is randomly chosen. In addition, at each iteration,
the numerical method avoids the sampling of the gradient over the probability space
and it requires the computation of the gradient DαR(ζn) only for one sample, although
the convergence rate is slower than the full gradient algorithm above. The iterative se-
quence is not determined uniquely by the function Q(α), the starting point α(1), and the
sequence of step size {hn}∞

n=1. Rather, {α(n)}∞
n=1 is a stochastic process whose behavior is

determined by the random sequence {ζn}∞
n=1.

The stochastic gradient descent method and the full gradient descent method offer
different trade-offs in terms of computational cost at each iteration and the convergence
rate for the iteration process. The full gradient iteration (4.1) is costly but stable, while
the stochastic gradient descent iteration (4.2) is efficient but less stable. The mini-batch
stochastic gradient descent method is designed to combine the advantages of both meth-
ods by choosing a small random samples of the gradients at each iteration. More pre-
cisely, the iteration takes the form

α(n+1)=α(n)−hn ·G(α(n)), (4.3)
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where

G(α(n))=
1

M0

M0∑
m=1

DαR(ζm;α(n))

is the average of the gradient over a small randomly chosen sample subset {ζm}M0
m=1. The

original stochastic gradient descent iteration (4.2) is a special case when M0 = 1. When
M0 > 1, the mini-batch stochastic gradient descent method reduces the variance of the
randomly chosen gradient during the iteration process by sampling over a larger set, thus
it is more stable than the original algorithm (4.2). Here we apply the iteration formula
(4.3) to solve the optimization problems (I)- (III) described as follows.

Algorithm 1 The mini-batch stochastic gradient descent method for Problems (I)- (III)

1: Choose initial guess α(0) and the sample size M0.
2: while The average gradient of the sample set ‖G(α(n))‖2> tolerance do

• Choose a random samples subset {ζm}M0
m=1 .

• For each sample ζm, solve the boundary value problem (2.13) and the adjoint
problems (3.2) in Section 3.2.

• Compute the gradient DαR(ζm;·) by the formulas (3.1a) and (3.1b) in Section 3.2.

• Set G(α(n))= 1
M0

M0∑
m=1

DαR(ζm;α(n)).

• Set α(n+1)=α(n)−hn ·G(α(n)), hn >0.

3: end while

4.2 Convergence of the stochastic gradient descent algorithm

In this section, we examine the convergence of the stochastic gradient descent method.
Let us focus on the case when the random variables {ξ j,m}M

m=0 in the Karhunen–Loève
expansion (2.15) are uniformly distributed over the interval [−0.5,0.5]. In what follows,
C denotes a generic constant. Its value may vary from step to step but should be clear
from the context.

Theorem 4.1. Assume the stochastic gradient descent iterations in Algorithm 1 satisfies
the following conditions:

(1) The step sizes (learning rates) {hn}∞
n=1 satisfy

∞∑
n=1

hn =∞ and
∞∑

n=1

h2
n <∞.

(2) The iteration sequence {α(n)}∞
n=1 is bounded in the closed region Uα=

(
[0,β1]×[β2,Λ]

)`
for certain constants β1,β2>0.
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Then E
[
‖DαQ(α(n))‖2

2

]
→0 as n→∞.

To prove the theorem, we need the following lemma.

Lemma 4.2 ( [15], Lemma 1). Let (at)t≥1, (bt)t≥1 be two nonnegative real sequences. As-

sume that
∞∑

t=1

atbt converges and
∞∑

t=1

at diverges, and there exists K≥ 0 such that |bt+1−

bt|≤Kat. Then bt converges to 0.

Proof of Theorem 4.1 From the expression (2.15), we have

∂ f j(ζ;αj;·)
∂α

(1)
j

= f̄ j(ζ;αj;·),

where f̄ j is given in (2.16). It follows that

E


∥∥∥∥∥∥∂ f j(ζ;αj;x1)

∂α
(1)
j

∥∥∥∥∥∥
2

L2([0,Λ])

=E
[
‖ f̄ j(ζ;αj;x1)‖2

L2([0,Λ])

]
≤C

P∑
p=0

|λjp|2.

On the other hand,
∂ f j(ζ;αj;x1)

∂α
(1)
j

=α
(1)
j ·

∂ f̄ j(ζ;α(2)
j ;·)

∂α
(2)
j

, and

∂ f̄ j(ζ;α(2)
j ;x1)

∂α
(2)
j

=
λ̄′j0

2
√

λ̄j0

ξ0(ζ)

√
1
Λ
+

P∑
p=1

λ̄′jp

2
√

λ̄jp

[
ξs

p(ζ)

√
2
Λ

sin
(

2pπx1

Λ

)

+ξc
p(ζ)

√
2
Λ

cos
(

2pπx1

Λ

)]
, (4.4)

where

λ̄′jp :=
∂λ̄jp

∂α
(2)
j

=
Λ
2

∂ĉjp

∂α
(2)
j

for p=0,1,2,··· ,P0.

Recall that
{

ĉjp
}∞

p=0 are the Fourier coefficients of the analytic function exp
(
−x2

1/
(

α
(2)
j

)2
)

,

thus

 ∂ĉjp

∂α
(2)
j


∞

p=0

are the Fourier coefficients of the function
x2

1

(α
(2)
j )3

exp
(
−x2

1/
(

α
(2)
j

)2
)

,

which again is analytic for x1∈ [0,Λ] and α
(2)
j ∈ [β2,Λ]. We deduce that

E


∥∥∥∥∥∥∂ f j(ζ;x1)

∂α
(2)
j

∥∥∥∥∥∥
2

L2([0,Λ])

≤C
(

α
(1)
j

)2 P0∑
p=0

∣∣∣∣∣ λ′jp

2
√

λjp

∣∣∣∣∣
2

=
Λ2

8

(
α
(1)
j

)2 P0∑
p=0

∣∣∣∣∣ ĉ′jp√
ĉjp

∣∣∣∣∣
2

≤C(P0),
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where the constant C depends on P0. Namely, there holds

E
[
‖Dαj f j(ζ;x1)‖2

2

]
≤C, j=1,··· ,`. (4.5)

Let p(y1,··· ,y2P0+1) be the joint probability density function of the multivariate ran-
dom variable (ξ0,ξs

1,··· ,ξs
P0

,ξc
1,··· ,ξc

P0
). From the continuous dependence of the solution

to the boundary value problem (2.13) on the interfaces, u can be viewed as a continuous
function of random variables (ξ0,ξs

1,··· ,ξs
P0

,ξc
1,··· ,ξc

P0
). Therefore,

E
[
‖u(ξ0,ξs

1,··· ,ξs
P0

,ξc
1,··· ,ξc

P0
;·)‖2

L2(D)

]
=

∫
Ω
‖u(ξ0,ξs

1,··· ,ξs
P0

,ξc
1,··· ,ξc

P0
;·)‖2

L2(D)dP(ξ0,ξs
1,··· ,ξs

P0
,ξc

1,··· ,ξc
P0
)

=

∫
[−0.5,0.5]2P0+1

‖u(y1,··· ,y2P0+1;·)‖2
L2(D)p(y1,··· ,y2P0+1)dy1 ···dy2P0+1≤C(P0).

(4.6)

Similarly, we have

E
[
‖u∗n‖2

L2(D)

]
≤C, E

[∥∥∥∥∂u
∂ν

∥∥∥∥2

L2(0,Λ)

]
≤C and E

[∥∥∥∥∂u∗n
∂ν

∥∥∥∥2

L2(0,Λ)

]
≤C. (4.7)

From Theorem 3.1,

E
[
‖Dα1 R(ζ;α)‖2

2
]
≤Cmax

n∈N
E

[
‖ûn(ζ;b)+

∫ Λ

0

(
∂ū
∂ν
· ∂u∗n

∂ν
ν2

)
·Dα1 f1dx1‖2

2

]

≤Cmax
n∈N

[
E
[
|ûn(ζ;b)|2

]
+E
[
‖
∫ Λ

0

(∂ū
∂ν

∂u∗n
∂ν

ν2

)
·Dα1 f1dx1‖2

2

]]
.

Using (4.5)-(4.7) and the Cauchy-Schwartz inequality, we obtain

E
[
‖Dα1 R(ζ;α)‖2

2
]
≤C.

Similarly, we have

E
[
‖Dαj R(ζ;α)‖2

2

]
≤C, j=2,··· ,`.

Following the same lines, it can also be shown that

‖D2
αQ(α)‖2

2=E
[
‖D2

αR(α)‖2
2
]
≤C. (4.8)

Here D2
α denotes the Hessian matrix of Q(α).
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Without loss of generality, we assume that M0 = 1 in Algorithm 1, and the iteration
becomes α(n+1)=α(n)−hn ·DαR(ζ;α(n)). Now, there exists α̃∈ (α(n),α(n+1)) such that

Q(α(n+1))−Q(α(n))

≤DαQ(α(n))T(α(n+1)−α(n))+
1
2
‖D2

αQ(α̃)‖2
2 ·‖α(n+1)−α(n)‖2

2

≤DαQ(α(n))T(α(n+1)−α(n))+
1
2

C‖α(n+1)−α(n)‖2
2

=−hnDαQ(α(n))TDαR(ζn;α(n))+
1
2

h2
nC‖DαR(ζn;α(n))‖2

2.

(4.9)

Let us take conditional expectation of (4.9) with respect to ζn. Then Eζn [‖DαR(ζn;α(n))‖2
2≤

C since E[‖DαR(ζn;α(n))‖2
2≤C. It follows that

Eζn [Q(α(n+1))]−Q(α(n))≤−hnDαQ(α(n))TEζn [DαR(ζn;α(n))]+
1
2

h2
nC2

≤−hn‖DαQ(α(n))‖2
2+

1
2

h2
nC2.

Taking the expectation yields

E[Q(α(n+1))]−E[Q(α(n))]≤−hnE[‖DαQ(α(n))‖2
2]+

1
2

h2
nC2. (4.10)

Denote Q∞ := liminf
n→∞

Q(α(n)), then Q∞ >0. By adding (4.10) from 1 to n, we obtain

Q∞−E[Q(α(1))]≤E[Q(α(n+1))]−E[Q(α(1)]≤−
n∑

j=1

hjE[‖DαQ(α(j))‖2
2]+

1
2

C2
n∑

j=1

h2
j .

Hence,
n∑

j=1

hjE[‖DαQ(α(n))‖2
2]≤E[Q(α(1))]−Q∞+

1
2

C2
n∑

j=1

h2
j .

Since
∑∞

n=1 h2
n <∞, there holds

lim
n→∞

n∑
j=1

hjE[‖DαQ(α(j))‖2
2]<∞. (4.11)

On the other hand, since Uα is closed, it follows that

E[‖DαQ(α(n+1))‖2
2]−E[‖DαQ(α(n))‖2

2]≤max
α∈Uα

‖D2
αQ‖2

2 ·E[α(n+1)−α(n)]

≤hn max
α∈Uα

‖D2
αQ‖2

2 ·E[DαR(ζn,α(n))]

≤C2hn.

(4.12)

From (4.11),(4.12) and Lemma 4.2, we deduce that E
[
‖DαQ(α(n))‖2

2

]
→0 as n→∞.
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5 Numerical experiments

In this section, we present several numerical examples to demonstrate the efficiency of
the numerical algorithm for solving the optimal design problems. The first numerical
example tests the efficiency of the stochastic gradient descent method for solving the op-
timization problem and its performance compared to the full gradient descent method.
In the second example, we apply Algorithm 1 to solve the optimization problem (I) at
fixed frequency. Example 3 and Example 4 demonstrate the efficiency of Algorithm 1
when it is applied to the optimization problem (II) and (III) in the case of broad-band
frequency and multiple incident angles. In all examples, we set the sample size M0 = 5

and use R̃ := 1
M0

M0∑
m=1

R(ζm;α(n)) and ‖G̃‖ := 1
M0
‖

M0∑
m=1

DαR(ζm;α(n))‖2 to denote the average

reflectivity and the average amplitude of the gradient at each iteration. For all examples,
the average thickness of the each layer is set as 300 nm, and the size of the periodic cell
Λ= 1500 nm. The state and adjoint problems are solved by the finite element method,
where for each random realization of the optical structure, each subdomain Dj is dis-
cretized by a triangular mesh such that the interface Γj shares the common side of two
adjacent triangles located above and below Γj respectively.

Example 1 For simplicity we do not explicitly consider the glass substrate and assume
that the solar cell consists of an absorbing layer (e.g., a-Si:H) at the bottom and a trans-
parent conducting oxide (TCO) layer on the top. The bottom of the structure Γ1, and
the interface Γ2 between the absorbing layer and the TCO layer are randomly texu-
tured. Assume that the free space wavelength λ0 = 650 nm. The relative permittivity
of the TCO layer is εr,1 = 3.667, and the relative permittivity for the absorbing layer is
εr,2=17.6380+0.3780i [10,13,18]. We consider the configuration when the incident angle
θ=0.

Assume that the interfaces Γ1 and Γ2 are random processes with the covariance func-

tion cj(x1− x̃1) =
(

α
(1)
j

)2
exp

(
−|x1− x̃1|2/

(
α
(2)
j

)2
)

. The initial guess is chosen to be

(α1,α2) = (35nm,20nm). We apply both the full gradient descent method (4.1) and the
stochastic gradient descent method described in Algorithm 1 to solve the optimization
problem (2.19), where the gradient DαR(ζm;·) is computed via formulas (3.1a) and (3.1b).
The stopping criteria is set as the amplitude of the average gradient amplitude ‖G̃‖ being
less than 0.05.

Figure 3 shows the value of the average reflectivity R̃ at each iteration for the stochas-
tic gradient method when the random variables in the Karhunen–Loève expansion (2.14)
are chosen to be uniform and Gaussian random variables, respectively. For the former,
the reflectivity R̃ decreases quickly in the first 50 iterations and it takes about 180 itera-
tions to achieve the stopping criteria, while it only takes about 60 iterations for the latter
to achieve the same tolerance. For completeness we also show the amplitude of the gra-
dient ‖G̃‖ at each iteration in Figure 4. It is clear that while ‖G̃‖ oscillates during the
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iterations but the envelope of ‖G̃‖ decreases as n increases. This is consistent with our
convergence analysis presented in Section 4.

Figure 5 shows the reflectivity Q for each iteration when the full gradient descent
method is applied. Here the Monte Carlo method is used for sampling the random space.
Table 1 and Table 2 collect the optimal parameters obtained by two different numerical
approaches. It is observed that the optimal parameters obtained by the stochastic gradi-
ent descent method and the full gradient descent method are close to each other.

0 20 40 60 80 100 120 140 160 180
0.4

0.5

0.6

0.7

0.8

R̃

0 10 20 30 40 50 60
Number of iterations

0.2

0.4

0.6

0.8

R̃

Figure 3: The reflectivity value R̃(α) during the stochastic gradient descent iterations. Top: {ξ0,ξm,s,ξm,c} are uniform
random variables; Bottom: {ξ0,ξm,s,ξm,c} are Gaussian random variables.

Table 1: The optimal values of α(1) and α(2) obtained by the full gradient method and the stochastic gradient
method for uniform random variables.

optimal result(nm) α
(1)
1 α

(2)
1 α

(1)
2 α

(2)
2 reflectivity

Full gradient method 41 30 38 26 0.503
Stochastic gradient method 44 33 35 24 0.495

Though the optimal solutions obtained by the full gradient and the stochastic gra-
dient methods are close, their computational cost is significantly different. When the
Monte Carlo method is applied to sample the probability space, the sample size needs to
be large. In our numerical experiment, the sample size is chosen to be 1000 for each iter-
ation. When the optical wavelength is 650nm, the computation of the gradient DαR(ζ,α)
for each sample ζ requires solving the boundary value problem (2.13) once and 9 ad-
joint problems (3.2) with all propagating modes. The full gradient algorithm stops after 7
steps, thus it requires solving 70000 boundary value problems. On the other hand, the 60
stochastic gradient descent iterations only requires solving no more than 3000 boundary
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Figure 4: The amplitude of the average gradient ‖G̃‖ during the stochastic gradient descent iterations. Top: {ξ0,ξm,s,ξm,c}
are uniform random variables; Bottom: {ξ0,ξm,s,ξm,c} are Gaussian random variables.
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Figure 5: The reflectivity value Q(α) during the full gradient iterations. Top: {ξ0,ξm,s,ξm,c} are uniform random variables;
Bottom: {ξ0,ξm,s,ξm,c} are Gaussian random variables.

Table 2: The optimal values of α(1) and α(2) obtained by the full gradient method and the stochastic gradient
method for Gaussian random variables.

optimal result(nm) α
(1)
1 α

(2)
1 α

(1)
2 α

(2)
2 reflectivity

Full gradient method 55 67 40 17 0.364
Stochastic gradient method 57 63 42 15 0.352
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value problems. Therefore, the stochastic gradient descent method lowers the computa-
tional cost dramatically.

Example 2 Consider the multiple-layer solar cell structure as shown in Figure 6, where
the interfaces of the two TCO layers are patterened randomly. The refractive index of the
TCO, the absorbing layer and the glass substrate are 1.915, 4.2+0.045i and 1.4, respec-
tively. Let the incident angle θ=0 and the wavelength λ0 =650 nm. We assume that all
the interfaces are Gaussian random processes.

It takes about 120 iterations for the stochastic gradient descent method to achieve the
desired tolerance, and the average reflectivity R̃ for each iteration is shown in Figure 7.
The reflectivity R̃ decreases from the initial value 0.75 to 0.37 for the optimal random
structure, with the corresponding absorptance value 0.63. As a comparison, the absorp-
tance of the structure with all flat interfaces is only 0.13. Figure 8 depicts the wave field
for one realization of random structure with the optimal result and Figure 9 shows the
wave field for the structure with flat interfaces. It is observed that the waves are scat-
tered in the random medium, which elongates the optical path and increases the overall
absorptance of the structure.

Figure 6: Optical structure with four random interfaces.
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Figure 7: The reflectivity value R̃(α) during the stochastic gradient iterations for Problem(I). The multi-layered medium
has four random interfaces shown in Figure 6.

Figure 8: Numerical solution of the boundary value problem (2.13) for one realization of random structure with optimal
parameters.
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Figure 9: Numerical solution of the boundary value problem (2.13) when all the interfaces are flat.

Example 3 In this example, we consider the more challenging optimization problem
with multiple frequencies, which is formulated in (2.20). Let us still use the multi-layer
structure shown in Figure 6. Assume that the interfaces are Gaussian random processes
and the incident angle θ=0. The refractive index of the absorbing layer is set as 4.5+0.12i
and 4.2+0.045i when λmin =600 nm and λmax =650 nm, respectively. For simplicity, we
assume the refractive index of the absorbing layer is a linear function of the wavelength
between λmin and λmax.

The integral
∫ λmax

λmin

R(ζ;α,λ)dλ in (2.20) is approximated by the sum
1

Mλ

Mλ∑
m=1

R(ζ;α,λm),

in which λm =λmin+
λmax−λmin

Mλ−1
(m−1) for m= 1,··· ,Mλ. We consider the normal inci-

dence with the incident angle θ=0.
Figure 10 shows the average reflectivity at each iteration for the stochastic gradient

descent approach. It is calculated the average reflectivity of the optimal structure is about
0.28 and the average absorptance is about 0.72. We see that the absorptance is signif-
icantly enhanced compared to the structure with flat interfaces, which only attains the
value 0.24.
Example 4 In this example, we consider the optimization problem with multiple inci-
dent angle for the structure shown in Figure 6. The problem is formulated in (2.21). We
still consider the interfaces with Gaussian random processes and solve the problem with

the stochastic gradient descent method. In the calculation, the integral
∫ θmax

θmin

R(ζ;α,θ)dλ

is approximated with the sum
1

Mθ

Mθ∑
m=1

R(ζ;α,θm), where θm = θmin+
θmax−θmin

Mθ−1
(m−1) for
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Figure 10: The reflectivity value R̃(α) during the stochastic gradient iterations for Problem (II).

m=1,··· ,Mθ . When the range of the incident angle starts from θmin=− π
12 to θmax=

π
12 , the

reflectivity at each stochastic gradient iteration is shown in Figure 11. We obtain an aver-
age absorptance value of about 0.51 for the optimal structure, which again is significantly
higher than the the structure with flat interface with an absorptance value 0.11.
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Figure 11: The reflectivity value R̃(α) during the stochastic gradient iterations for Problem (III).
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