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Abstract
This work presents a rigorous theory for topological photonic materials in
one dimension. The main focus is on the existence of interface modes that
are induced by topological properties of the bulk structure. For a general 1D
photonic structure with time-reversal symmetry, we investigate the existence of
an interface mode that is induced by a Dirac point upon perturbation. Specific-
ally, we establish conditions on the perturbation which guarantee the opening
of a band gap around the Dirac point and the existence of an interface mode.
For a periodic photonic structure with both time-reversal and inversion sym-
metry, the Zak phase is quantized, taking only two values 0, 7. We show that
the Zak phase is determined by the parity (even or odd) of the Bloch modes at
the band edges. For a photonic structure consisting of two semi-infinite systems
on the two sides of an interface with distinct topological indices, we show the
existence of an interface mode inside the common gap. The stability of the
mode under perturbations is also investigated. Finally, we study resonances
for finite topological structures. Our results are based on the transfer matrix
method and the oscillation theory for Sturm—Liouville operators. The methods
and results can be extended to general topological Sturm—Liouville systems in
one dimension.
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1. Introduction

Topological insulators are electronic materials that conduct electrons on their edges or surfaces
without backscattering. The underlying protected edge/interface mode is robust in the presence
of large impurities, which prevents the degradation of device performance due to fabrication
imperfections. Tremendous progress has been made in the past several decades in the studies
of topological insulators and quantum topological materials in general in electron systems [8,
23]. Inrecent years, there has been increasing interest in exploring the analogue of the quantum
topological materials for periodic photonic/phononic band gap materials [21, 26, 30-33].

From the mathematical point of view, there are several important questions in the studies
of topological materials.

(a) The first one concerns with the Dirac points of the band structure for the topological mater-
ial. Dirac points are special vertices located at the Brillouin zone corners when two bands in
the spectrum touch in a linear conical fashion and degeneracies occur for the corresponding
Bloch modes [21]. We refer to [19] for the rigorous mathematical studies of Dirac points
in 1D periodic Schrodinger operator with double-well potential and [17] for the investig-
ation of Dirac points for Schrodinger operator with the Honeycomb lattice potentials in
2D. In general, a topological phase transition takes place near the Dirac point and interest-
ing physics phenomena occurs as a result. This is exemplified in photonic graphene and
subwavelength resonators in [1, 4, 18, 28] and references therein.

(b) The second question is the existence of interface modes (also called edge modes or edge
states) that are supported at the interface of two structures with distinct topological invari-
ants. This is typically formulated as the so-called bulk-edge correspondence, which form-
ally states that the bulk index is equal to the edge index. The former is a topological quant-
ity that can be computed from the bulk media, while the latter is related to the number
of edge modes supported by the structure. A variety of tools have been developed for the
study of the bulk-edge correspondence in different settings, including K-theory, functional
analysis, microlocal analysis, etc [6, 7, 11, 13, 15, 16, 22, 25, 34, 35].

(c) The third one is the stability of the interface modes supported by the topological materi-
als. Such modes are ‘topologically protected’ in the sense that they are stable against the
system perturbations that are not necessarily small; see, for instance, [19] and [5] for the
mathematical investigation of stability for edge mode in 1D Schrédinger system and sub-
wavelength resonators respectively.

In this paper, we study one-dimensional photonic structures with time-reversal symmetry.
The corresponding periodic differential operator is given by:

1 d (1
w—%manw

and the coefficients satisfy the following:

) forx € R, (1.1)

Assumption 1. The permittivity £(x) and the permeability u(x) are positively valued and are
piece-wisely Lipschitz continuous with period one:

ex)=e(x+1), plx)=px+1). (1.2)

We aim to provide a rigorous mathematical theory for the one-dimensional topological struc-
tures, especially on the existence and stability of the interface modes. Based on the transfer
matrix method, we characterize the Dirac points of the structure precisely. We present explicit
conditions for the perturbation of the structure so that a band gap can be opened near the Dirac
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point and an interface mode can be generated (cf theorem 4.7). For structures with additional
inversion symmetry, we provide explicit formulas for the Berry phase, which is also called the
Zak phase for one-dimensional structures. In this scenario, the Zak phase is closely related to
the parity of the Bloch modes at the band edges. It is quantized by taking the value of O or
7 only and hence becomes a natural bulk topological index. We establish the existence and
investigate the stability of interface modes when two semi-infinite periodic structures attain
distinct topological indices. These results are formulated in theorems 5.10 and 5.11. Further-
more, we study the resonances for finite topological structures, for which the eigenvalues are
complex-valued and they converge exponentially fast to the eigenvalues of the infinite topolo-
gical structure as the size of the structure increases (cf theorem 6.3).

We mention several closely related works [12, 14, 19, 20], where one-dimensional
Schrodinger equations with periodic potentials are studied using multiscale analysis or scatter-
ing theory for highly oscillatory operators, etc. It is shown in [ 19] that for a class of background
periodic Schrodinger operators with Dirac points, localized edge states can be induced via
small and adiabatic modulation of the periodic potentials with a domain wall, and the bifurca-
tion of these states are associated with the discrete eigenmodes of an effective Dirac operator.
In [14], the authors study a topological system where the background periodic Schrodinger
operator is perturbed by a small and adiabatic dislocation. It is shown that all the edge states
of the dislocated system are associated with the eigenmodes of an effective Dirac operator.
Moreover, the full asymptotic expansions of the eigenpairs are derived. In [12, 20], the bulk-
edge correspondence is rigorously established for a family of operators, wherein each operator
corresponds to a dislocation of the background periodic Schrodinger operator. In this work,
we apply the transfer matrix method and the mathematical theories for the Sturm—Liouville
operators to derive the existence of interface modes for the underlying differential operator in
the photonic system. We also investigate the stability of interface mode and study the reson-
ant finite topological structure. Compared to [12, 14, 19, 20], the approach developed and the
results obtained in this paper have the following new features:

e The analytical approach is based on the transfer matrix method and can be applied to differ-
ential operators with discontinuous coefficients. In addition, the Priifer transform is used to
study the stability of interface modes.

e The concept of impedance function for semi-infinity periodic structures is introduced and
their basic properties are established. They are used to derive conditions on the existence of
interface modes at the interface of two different periodic operators. This new approach can
address the case of a sharp interface that separates two different materials.

e A characterization of Dirac points for the periodic operator (1.1) is given in terms of the
discriminant of the transfer matrix.

e A general perturbation theory for opening a band gap near a Dirac point of the periodic
operator (1.1) is established for the first time. So is the theory for the bifurcation of interface
eigenvalue from a Dirac point under a general perturbation.

e The existence of the interface modes is proved for topological materials with inversion sym-
metry and a bulk-interface correspondence type result is established.

Finally, we also refer to [3, 5] for the studies on topologically protected edge states in a
one-dimensional chain of subwavelength resonators in three dimensions and [10] for using
a combination of the transfer matrix method and the homogenization approach to study Su—
Schrieffer—Heeger model.

The rest of the paper is organized as follows. In section 2, we recall the band structure theory
for the 1D periodic differential operators, and introduce the Dirac point and Zak phase for the
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structure. The concepts of impedance function and interface mode for a joint photonic struc-
ture are introduced in section 3. Section 4 studies the perturbation of a time-reversal symmetric
photonic structure with a Dirac point and the existence of an interface mode for the perturbed
system. Section 5 focuses on time-reversal symmetric structures that attain inversion sym-
metry. The existence of an interface mode that is predicted by the bulk topological indices
and its stability under perturbations that are not necessarily small are established. Finally, the
studies of resonances for finite topological structures is provided in section 6.

2. Band structure, Dirac point and Zak phase for the periodic structure

In this section, we present the band structure theory for the periodic differential operator £
defined in (1.1). We also introduce Dirac points at the corners of the reduced Brillouin zone
and the Zak phase for the periodic structure.

2.1 The transfer matrix and the spectrum of the operator L

The spectrum of the operator £ can be characterized using the Floquet—Bloch theory and the
transfer matrix. For completeness we collect several key results in this section. The readers
are referred to [27] for more details about the Floquet-Bloch theory for periodic differential
operators.

Throughout, we let L?>(R) be the Hilbert space equipped with the inner product:

W¢%3Ad@m@a@w.

Here and throughout the notation ¢(x) means the complex conjugate of the number ¢(x). We
use the notation X for the Hilbert space L?[0, 1] equipped with the inner product:

1
(u,v) = /0 () u(x)F(x)dx. @1

Let B = [—m, 7] be the Brillouin zone and [0, 7] be the reduced Brillouin zone. For each Bloch
wavenumber k € 13, we consider the following one-parameter family of Floquet—Bloch eigen-
value problems:

LY(x) =Ep(x) x€R, (2.2)
in the function space:

L={ucl :u(x+1)=c*u(x)},

loc

where L7 :={u: [ e(x)|u(x)|*dx < oo, V compact set K C R}. For each k € B, the eigen-
value problem (2.2) is self-adjoint with the inner product (2.1) and attains a discrete set of real

eigenvalues:
E\(k) S Ea(k) <+ < Ej(R) < -

The function E (k) is called the dispersion relation of the jth band and the eigenfunction
associated with E (k) is called the jth Bloch mode with quasi-momentum k. In electromag-
netism, the eigenvalue E and the frequency of the photonic mode w is related by E = w? [24].
For convenience of notations, we present the band theory using the eigenvalue E. The corres-
ponding band theory using the frequency w is similar.

For each integer j, let,

E; =min{E;(k) : k € B}, Ej =max{E;(k) : k € B}.
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Then the entire spectrum of the operator £ on L*(R) is given by:

o(L) = | JIE; . E]).

jzl

which corresponds to the essential spectrum of the operator. If E]+ < E}, the spectrum forms
a band gap between the two bands E (k) and E ;1 (k).

The band structure of the spectrum can be characterized using the transfer matrix. To this
end, for each E € R, we let v and 9g» to be the solutions to the following initial value
problems in R respectively:

1

(L—E)Ee1 =0, ¢gi(0)=1, miﬁé,l(o) =0, (2.3)
1

(L—=E)Ee2=0, tE2(0)=0, mi/’é,z(o) =1 (2.4)

For x € R, let

g1 (x) YE2(x) ) . 2.5)

i R

It is clear that the second-order initial value problems (2.3) and (2.4) are equivalent to the
following first-order initial value problem in R:

J= (_01 é) B:B(x):<8 u?ﬂ)’ W:W(x):<€((;c) 8).(2.7)

Recall that the coefficients €(x) and p(x) are real-valued and are piece-wisely Lipschitz
continuous. It follows from the theory of first-order linear ordinary differential equations that
the solution Wg(x) is uniquely defined for all x in R. Moreover, it is real-valued and abso-
lutely continuous in R, and it depends on E smoothly. In particular, the functions 1/1"5, j(x) and

where

ﬁd)g’ j(x) (j = 1,2) are real-valued and continuous for x € R.

Remark 1. At a point of discontinuity of u, say x =xg, we should interpret the value

0y Y1 (x0) as either the left-sided limit - (io_) Vg (xg ) =tlim, - o454 (x) or the right-

sided limit ﬁg)wil (xg) =:lim, - ﬁ%l (x). The two-sided limits are equal by the con-

tinuity of the solution Wg(x). For ease of notation, we use the notation me | (xo) for either
of the two-sided limit in subsequent analysis.

The solution matrix W(x) is referred to as the transfer matrix, which can be used to char-
acterize the solutions to the initial value problem for the differential operator £ — E. Next we
shall use it to characterize the spectrum of the operator L.

Let M(E) = Ug(1), which is called the monodromy matrix. The following lemma states
the relation between the eigenvalues of £ in L7 and the eigenvalues of the 2 x 2 matrix-valued
function M(E).

Lemma 2.1. (a) For each k € B, if (E,1) is an eigenpair of the operator L in L2, then
((0), m (10) ' (0))T is an eigenvector of the monodromy matrix M(E) with the correspond-

ing eigenvalue e'*.
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(b) If the matrix M(E) attains an eigenpair (e (c1,c2)T) for some k € B, then 1(x) =
c19e.1(x) + catbg 2(x) is a Bloch mode of the differential operator L in L} with the eigen-
value E.

Proof. Given k € 3, assume that (E, 1)) is an eigenpair of £ in L7. We can write:
P(x) = e (x) + etpepa(x), x€[0,1], (2.8)

where ¢; = ¢(0),¢; = ﬁd/ (0). Together with the quasi-periodicity of the function in L2, we
have:

(1) = c1vg,1 (1) + c2pp (1) = e*1p(0) = ecy, (2.9)
1 1 . .
md’l(l) = m(clﬁfél(l) +ep,(1)) = flkm¢/(0) =e%cy,  (2.10)

or equivalently,
M(E)c = é*c, wherec=(c,c).

Thus the monodromy matrix M(E) attains an eigenvalue ¢’ and the associated eigenvector c.
On the other hand, assuming that M(E) has an eigenpair (e’*,c). We construct 1 by (2.8). It is
straightforward to show that 1 is a Bloch mode of £ in L. O

Lemma 2.2. det M(E) = 1.

Proof. For each fixed E, consider f(x) = det Ug(x). A direct calculation shows that f’(x) = 0.
As aresult, det ¥ (x) is independent of x. The proof is complete by noting that U5 (0) = Id. O

Define

D(E) = TrM(E) = (1) + s ).
D(E) is called the discriminant of the M(E). It is clear that D is real valued. The two eigenvalues
of the matrix M(E) are given by:
D(E)—+/D(E)*—4 D(E)+/D(E)?—4
>\E’1 = 2 ) )\E,Z - D) .
If [ID(E)| <2, then \g; and g, are conjugate pairs with |[Ag 1| = |Ag2| = 1. It follows
from lemma 2.1 that E € o(£). On the other hand, if |D(E)| > 2, then both Ag; and Ag are
real numbers satisfying [Ag1| < 1 < |Ag2|or [Agz| <1 <|Ag;1|- Inthis case, E & o(L) and it
lies in the band gap. In summary, we have the following lemma characterizing the spectrum
of £ using the discriminant D(E).

@2.11)

Lemma 2.3. The real number E € (L) if and only if |D(E)| < 2.
Let

S={E€R:|D(E)| <2} and I={E€R:|D(E)|>2}.
Then the following lemma holds. We refer to theorem 1.6.1 in [9] for its proof.

Lemma 2.4. (a) The function D(E) is strictly monotonic on each subinterval of S.

(b) For E € R, it holds that D(E) =2 and D'(E) =0 if and only if M(E) = Id. In this case,
D" (E) <0.

(c) For E € R, it holds that D(E) = —2 and D' (E) = 0 if and only if M(E) = —Id. In this case,
D" (E) > 0.
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Using the above lemmas, a quantitative characterization of the spectrum for the operator L is
given in the theorem below.

Theorem 2.5. Let L be a periodic operator in the form of (1.1) that attains periodic coeffi-
cients in the sense of assumption 1.

(a) The following inequalities hold for the spectrum o (L) = | [E;,Ejr]
izl

0=E; <Ef <E; <Ef <E; <Ef--
(b) The dispersion relation E; = E (k) can be obtained by solving the equation:
2cosk = D(E) (2.12)

forke BandE € [Ej_,Ej']
(c) E;(k) are strictly monotonic on each of the half Brillouin zone (—m,0) and (0, ).

(d) For each j > 1, we have either:
EJ]r =max{E;(k):k€ B} =E;(0), E,;; =min{E; (k) : k € B} = E;11(0),
or

ET = max{E;(k) : k€ B} = E (), E;  =min{E; (k) k€ B} =Ej1(m).

(e) It holds that D(E*) = +2 and D' (E*) =0 if and only if E* = Ej' =E, for some j = 1.
If this is the case, then E* = E;(0) =E;4,(0) if D(E*) =2 and E* = E (1) = Ej4,(m) if
D(E*) = -2.

Proof. (a) Itisclearthato (L) C [0,00). By lemma 2.3, we see that |D(E)| > 2 for E < 0, thus
S C (0,00). We write

s=Js

izl

where S; are the subintervals of S ordered in an increasing manner. By lemma 2.4, we have
Sj=(E7,Ef), and it follows that 0 = Ey < Ef <E, <E; <Ej <Ej ---.

(b) follows from lemmas 2.1 and 2.2. The eigenvalues of M(E) are given by A\g; = e* and
>\E,2 = ¢k,

(c) follows from (a) in lemma 2.4.

(d) From (c), either Ef =E;(0) or Ej = E;(m) holds. We consider the former case and show
that E;, | = E;11(0), and the proof for the latter case is similar. Indeed, note that [D(E)| >
2 onthe interval (EJ,E7, ). Since D(E}) = 2, it follows that D(E, ) = 2 by lemma 2.3.
That is when k = 0 in the equation (2.12) and we obtain £ | = Ej11(0).

(e) If D(E*) = £2 and D'(E*) = 0, By (b) and (c) in lemma 2.4, we see that [D(E)| < 2 for E
sufficiently close to but not equal to £*. Therefore, E* separates two subintervals in S and
consequently E* = Ejr = Ejjrl for some j > 1. On the other hand, if E* = ET = E;H for
some j > 1, then (d) implies that either E* = E;(0) = E;41(0) or E* = E (7)) = Ej41().
Using (b), we further deduce that D(E*) =2 in the former case and D(E*) = —2 in the
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latter case. Note that using lemma 2.3, |D(E)| < 2 for E near E*. This is only possible
if D’(E*) = 0. Therefore, we have D(E*) = £2 and D’(E*) = 0. The last assertion also
follows.

O

Following the terminology in the physics literature [38], in what follows, we shall call the
points (0,E;(0)) and (m, E;(7)) (or(—m,E;(—7))) edge points of the jth spectral band. Then
the above theorem implies that both the maximum and minimum of the dispersion relation for
a given band E (k) are achieved at the band edge points.

2.2. Dirac point

A pair (k*,E*) € B x R on the dispersion curves is called a Dirac point for the spectrum of
the differential operator £ in (1.1) if:

(a) There exits integer j > 1 such that E;(k*) = E;;;(k*) = E*. In addition, there exit con-
stants o >0 and ¢ >0 such that the following expansions:

Ei(k) =E —alk—k|+0((k—k")?),
Ejp1(k) = E" +alk— k| + O((k— k)%,

hold for |k — k*| < 4.
(b) The multiplicity of the Bloch modes in L. for the eigenvalue E* is two.

The following proposition characterizes the Dirac points using the discriminant D(E).

Proposition 2.6. Let L be the differential operator in the form of (1.1) that attains periodic
coefficients in the sense of assumption 1. Then the Dirac points for its spectrum can only
occur atk* = 0 or k* = 7 with D(E*) = +2 and D' (E*) = 0. Furthermore, if (k* = 0,E*) isa
pair on the dispersion curves with D'(E*) =0, D(E*) =2, then (k* = 0,E*) is a Dirac point.
Similarly, the pair (k* = w,E*) is a Dirac point if D'(E*) = 0 and D(E*) = —2.

Proof. By virtue of (c) in theorem 2.5, Dirac points can only occur when k* =0 or k* = 7.
Using (e) in theorem 2.5, we have D(E*) = +2 and D/(E*) = 0.

We now assume that (k* = 0, E*) is a pair on the dispersion curves such that D’(E*) =0,
D(E*) =2 and aim to show that (k* =0,E*) is a Dirac point. First by (e) in theorem 2.5,
it follows that E* = Ejr =Ej,, for some j > 1. Note that M(E*) = Id by lemma 2.4. The
multiplicity of the eigenvector is 2. We deduce from lemma 2.1 that the multiplicity of the
Bloch modes is 2. Furthermore, in the neighborhood of k* = 0, we have cosk=1— %k2 +
O(k*). Solving the equation:

1
2cosk =D(E) =2+ §D”(E*)(E—E*)2 +O(E—E*),

we obtain the following expansions for dispersion curves E;(k) and E ;1 (k):

2

Ej(k) =E* — |k—k*| W+0((k—k*)2), (2.13)
2

Eji1(k) =E* + |k —k*| m—i—O((k—k*)z). (2.14)

This completes the proof that (k* = 0, E*) is a Dirac point. O
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From the above discussions, a Dirac point appears when two neighboring bands touch each
other and the multiplicity of the Bloch modes at the Dirac point is two. In fact, the multiplicity
of the Bloch modes for non-Dirac point is always one, as stated in following proposition.

Proposition 2.7. Let L be a differential operator in the form of (1.1) that attains periodic
coefficients in the sense of assumption 1. For each pair of (k,E;(k)) (j > 1) that is not a Dirac
point, the multiplicity of the associated Bloch modes is one.

Proof. In light of lemma 2.1, we only need to show that the multiplicity of the eigen-
vector for M(E) is 1. The claim is automatically true when M(E) attains two different eigen-
values, thus it is sufficient to consider M(E) at k=0 and k=7 only when Ag; = Ag>.
Without loss of generality, we consider the former case. Let E=E j(O), then A1 = Ag2 = 1.
If dimKer(M(E) — Id) =2, then M(E) = Id, which implies that Ej =Ej;,, by lemma 2.4
and theorem 2.5, and consequently (k=0,E = E;(0)) would be a Dirac point. Therefore,
dimKer(M(E) —Id) = 1. O

2.3. Bloch modes

Assuming that the jth spectral band of the operator £ does not intersect with other bands, we
construct its Bloch modes using the transfer matrix. For each E € [EJ_,E;"], let k be a real
number in [0, 7] such that:

D(E)+i+/4—D(E)? 2.15)
2 ’ '
the first eigenvalue of the matrix M(E). We choose the corresponding eigenvector:
(1/)E,2(1),€ik —YE,1 (1))T-

It follows from lemma 2.1 that:

¢jx(x) == Yea(D)Yop1 (x) + (e* — 1 (1)Yea(x), x€[0,1], (2.16)

is a Bloch mode and it forms a basis of the one dimensional eigenspace. We define the nor-
malized Bloch mode by letting:

Pk = Ok

P iy

It is clear that the above Bloch mode is well-defined as long as the eigenvector above is nonzero
and the function ¢; # 0. The case ¢; =0 is a degenerate case which only occurs at the
band edge where k = 0 or . We next show that the Bloch mode ¢ ;. constructed above can be
extended continuously in [0, 7] when such degeneracy is present.

et =gy =

Lemma 2.8. Assume that the jth spectral band of the operator L does not intersect with other
bands. If ;0 =0 or ¢ » = 0 at the jth band edge, then there holds:

ip« o .
m o= B2 = E0),
B = Tl /0)
or
. i >
lim ;= ——">— E*=E;m),
ks — 90./7 ||'¢E*,2||X J( )

respectively. Moreover, g~ » is a Bloch mode for k=0 and k = 7 respectively.

9
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Proof. If ¢; o =0, then g« »(1) = 1 — 9g~ 1 (1) = 0 with E* = E;(0). From (2.16) we have:

0 ; 0 A A
d)g;];(x) =3E (e (1)te,1 (x) = e (1)he (x) + € Ypa (x)) E (k) 4 ie™ e (x).
Note that at E = E* = E;(0), we have E;(0) = 0. Thus
00 i r(x .
QSJTI;{()M:O = ”PE,z(x)-
It follows that:
Yigr = lim ;= iV,
70 koot Ik lVe2llx

We now show that - » is a Bloch mode. Indeed, since g+ »(1) =0 and g~ (1) =1,
from (2.15) we have ﬁwg*,z(l) =1= ﬁwg*,z(m. Therefore, it follows from lemma 2.1
that g« » is a Bloch mode for k = 0. The proof for the other case is similar. O

From the above discussions, we see that the Bloch modes:

T2 ¢ £ 0
Pik= “%ﬂx t i F .
lYE2lx if ¢j,k = 0,

are continuous in the reduced Brillouin zone [0, 7]. For £ with periodic coefficients, the above
Bloch modes can be extended for k € (—,0) by letting:

_ Pik
¢, —llx

We end this subsection by discussing the Bloch modes at the Dirac points.

Pjk=Pj,—k

Lemma 2.9. Assume that the jth and (j+ 1)th bands touch at the Dirac point (0,E*), then:
Pjt1,0(x) = —pjo(x). (2.18)
The same relation holds at the Dirac point (7, E*).

Proof. Let ¢, be the Bloch modes given by (2.16), where E = E;(k) adopts the expan-
sion (2.13). We have the following expansions for k>0 and E < E*:

: 1
X =1+ik+0(k*) =1—i(E—E") —5D"(E*) + O(E — E*)*.

On the other hand,
vea() = 222 W ey oE- Y,
Y1 (1) =1+ %%w(E*)(E—E*) +O(E—E*)%.
Denote
OYg(1) _ OYen(1)
bi(E) = g by(E) := —E
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We see that ¢; ; admits the expansion:

¢j,k(x)=(E—E*)< 2 (E™) Vg1 (%) ( \/—*D” (E*)—bi(E >1/JE,2(X)>

+O(E—E*)%.

It follows that:

. 0 ( \/W bi(E )@Z’E* 2(%)
o) =
?io0 Io2(E) Wﬁ( /=D (E") — by () ol

Similarly, we can show that:

2 2 EE %)+ (iy/=3D"(E*) = by (E) ) v 2 ()
®j+1,0(X
b2 (E*)hE= 1 + (i\/—%D" (E*) —bi(E*) )¢E*,2||x

whence (2.18) follows. O

2.4. Zak phase

Given a normalized Bloch mode ¢ 4 for (k, E ;(k)) € B x R over the jth band, one can express
¢k in the form of:

Qix(x) = e™uj(x),

where uj x(x) is a periodic function satisfying u; x(x) = u;x(x+1). u; 4 is called the periodic
part of the Bloch mode ¢ ; ;. For the jth band that is isolated, it is clear that the Bloch modes
¢« form a closed loop as k runs over the Brillouin zone from — to 7 since ¢ . and @; _x
only differs by a global phase constant. However, this is no longer the case for the periodic
part u since u; (x) = e”?”uj,_ﬂ(x) even if ¢; » = ¢, _,. To take this into account, we
define the following discrete Zak phase over the jth band (cf section 3.4 in [36]):

N-2
0§N> = —Imin (uj,,, k) — ImIn (e w4 15, )  mod 2, (2.19)
n=0

2
where k, = —7r+ﬂ,n:0,l,---N— 1.
N
If the Bloch mode ¢ x is smooth with respect to k over the Brillouin zone with ¢; _» = ¢; «,

by taking the continuum limit of (2.19) as N — oo, we recover the well-known Zak phase
formula (cf [36, 39]):

ej:i/ ( glfc’k,ujvk) dk mod 27 . (2.20)
. B

The Zak phase 6; is invariant under the gauge transformation with u;; being replaced
by ¢®®y;, for certain phase function B(k). This can be observed from the discrete
formulation (2.19).

1
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For uj that is piecewisely smooth in (—,0) U (0,7) with respect to k, the continuous
formula (2.20) cannot be used directly. We modify (2.20) by taking into account of the possible
phase jump at k = 0, 7, and define the Zak phase accordingly as:

0 T
81/!‘1( 8u-k ~
0. = i/ < J> ,u-yk> dk+i/ ("’,u',k) dk+60; mod 2, 2.21)
J . 6/{ J X 0 6]( J X J

where 6 j 1s given by:

éj = —Imln(ujwo, uj70— )X — Imln(e_ﬂ”uj7(_7r)+ 5 I/tj"ﬂ—)x.

In the above, u;o- =limy_ - u;x and u; )+ =limg_, )+ u;x denote the one-side
limit.

3. Impedance function and interface mode

3.1. Mode decomposition in the band gap and impedance function

In this section, we consider the decomposition of the solution to the wave equation (£ — E)i) =
0 when E ¢ o(L) lies in a band gap of the operator £. We assume that Ejr <E ,and E€

(E;r ,E} ). Here and henceforth, without loss of generality we assume that the trace D(E) > 0
so that the eigenvalues defined in (2.11) satisfy [Ag 1| < 1 and |Ag| > 1 in the band gap. If
D(E) < 0, all the arguments follow by replacing Az ; and Ag» with each other.

Let ¢ be a solution of (£ — E)y =0forE € (El+ ,E ). Define the vector-valued function,
1

D)1= ((3), 5 ()
Using the transfer matrix, there holds:
O(x+n)=Vp(x+n)P(0) = Vg(x)Ve(n)®(0) = Vg(x)M(E)"®(0), xe€]0,1].
Recall that,

M(E) =

< Ye1(1) Yea(1) )
Ve Y1)

We denote by Vg ; (j = 1,2) the eigenvector of the matrix M(E) associated with the eigen-
value \g ;. By decomposing ®(0) as ®(0) = #, Vg1 + 12V 2, it follows that:

M(E)"®(0) = t1\g | VE1 + 12N g 2 Ve .
Therefore,
Q(x+n) =n\g  Ve(x) Ve + 0 g, VE(x) Ve,
and
Y(x+n) =0 Ag, (Ve 1(x), Ve (X)) VEL + 02X 2 (Ve (), 002 (X)) VE2.

Note that the functions ¢z ; (x) and ¥g»(x) are continuous in x, hence there exist constants
Cy,C, > 0 such that:

C1 < [|(¥e1 (%), VE2(X) VE jll2j0,1) < C2y  j=1,2.

Using the relations:

I Z20.00) = DI sy 1@ ce.0y = D I 221,

n=0 n<0
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and the condition that |\g ;| < 1 and |Ag | > 1, we can conclude that:
[ () [l 2210,00) < 00

if and only if ©, = 0 and ®(0) = 1, Vg1, and that
||¢(x)|\L2(—oo,o] < 00,

if and only if #; = 0 and ¢(0) = 1, Vg 5.
We now consider two scenarios when ¢g (1) = 0 or not. If 1g 2 (1) # 0, we set:

_ YEa(l) B Ya(1)
Ve <)‘E’1 _¢5’1(1)> and Ve = (/\E,z —1/JE,1(1)) ’ G-

and the following results hold.
Lemma3.1. LetE € (Ef,E;_H) and g 2(1) # 0. Let ¢ be a nontrivial solution to L) = E.

(@) [|9(x) 120,00 < 00 if and only if, up to certain constant,

Y(x) = Y2 (D) YE1(x) + (Mg — e (1))YE 2 (x).

(b) |(xX)]|12(~o00,0) < 00 if and only if, up to certain constant,

P(x) = Ye2(1)Ye1(x) + (A2 — e (1)) Ve (x).

If g 2(1) = 0 at E = E*, the monodromy matrix:

. Y- (1) 0
ME) (,@wg*,l<1> ,@wg*,2<1>>-

We see that either ¢+ 1 (1) = Ag« 1 or ¥g+ 1 (1) = Ag~ » depending on whether [¢)g- 1 (1)] <
Lor |[¢g«1(1)] > 1. If ¢+ 1 (1) = Mg~ 1, Vg1 defined in (3.1) is a zero vector and hence can-
not be used as an eigenvector for the eigenvalue Ag- ;. In this degenerate case, noting that
the matrix M(E) is smooth in E, so the family of eigenspace associated with eigenvalue Az
depends on E continuously. Therefore, for E near E*, we choose,

¥(wE,2(1)a)‘E,l — e (1),

V =
E,1 E_ E~

for E # E* and,

Vi- = lim E—lE* (e2(1), A — ea(1)7,
if the limit exists. We choose Vi » in a similar way if g« 1 (1) = Ag~ 2.

We now introduce the concept of impedance function, which is used in the proof of the
existence of interface modes in the subsequent sections. From the above discussions, it is
known that for each E in the band gap, all the solutions to the equation (£ — E)y) = 0 with
finite energy over the left half-line (—oo, 0] spans a one-dimensional space. Let ¢/, g be one of
such solutions, and define:

Yre(0 .
e(E) = 2O e (0) 20,

2o ¥Le(0)
Here L denotes that the solution 9 g attains finite energy on the left of the real axis. In the
case when 9} z(0) = 0, we set {(E) = oc. Note that ¢/; ;(0) and ¢/, £(0) will not vanish sim-
ultaneously, otherwise ¢y, g = 0.
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It is clear £, (E) defined above is independent of the choice of the solution ¢/ . We call
¢.(E) the impedance function for the operator £ defined over the half-line (—o0,0]. Using
lemma 3.1, we have:

_ Yea(l)
Su(E) = Me2 —YEi(1)

We remark that the above definition can be extended to those £* in the band gap satisfying
Yes 2(1) = Mg 2 — YE= 1 (1) = 0.

In such scenario, we interpret:
§L(E™) = Aim, §L(E),

provided that the limit exists. Using the fact that the functions Ag1,%g2(1) and g 1(1) are
continuous in E (since the matrix Wg(1) is smooth in E), we see that £, (E) defined above is
continuous in E in the band gap (E;F,Ejjrl) except at those points where £, (E) = oo.

The impedance function &, (E) can also be used to define the Robin boundary condition for
the operator £ — E defined in (—00, 0]. Indeed, all the solutions ¢ to (£ — E)¢ = 0in (—00,0]
that decays at —oo satisfies the Robin boundary condition:

1
P(0) = &L (E)—=4'(0) =0
In the case when &, (E) = oo, the above boundary condition is interpreted as the Neumann
boundary condition.
In a similar way, we define the impedance function for the periodic operator £ defined in
the right half-line [0, 00) by:

Yr,£(0) Yea(l)
E):= ’ = 7
Er(E) ﬁwkﬁ(o) )\E,l_'l/]E,l(l),

where 1) £ attains finite energy over the right half-line [0, c0).

3.2. Interface mode
We now introduce the definition of interface modes:

Definition 1. Let £_ and £ be two periodic operators with the coefficients (¢_,1_) and
(64,4 ) satisfying assumption 1. Let £ be the ‘glued’ operator over the whole real line such

thatas £ = L£_forx<Oand £ =L, for x>0. A function 1) is called an interface mode of the
structure associated with the operator £ if:

Y €*(R) and (L—E)p(x)=0 forxeR,
for some real number E. E is called the energy level of the interface mode .
The existence of interface modes can be formulated in terms of impedance functions.

Lemma 3.2. Let L_, L and L be given as in definition 1. Assume that E lies in a common
spectral band gap of L_ and L, and &, _ (E) and &g 4 (E) are the corresponding impedance
functions at the interface x = 0. Then there exists an interface mode at energy level E for the
operator L if and only if:

£, (E) =& 4 (E).
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Proof. If ¢/ is an interface mode for £, then ||/ (x) 2Ry < 0. By restricting ¢ over (—00,0]
and [0, 00) respectively, we obtain:

$(0%)

v(0) e
=5 R

where 0% denotes the one-sided limit at the interface. The continuity of the solution implies
that &, _ (E) = &g + (E). On the other hand, given &, _ (E) = &g 1 (E), we can construct ¢, and
Vg With [[Yr]12(—o,0) < 00 and [|9g][12]0,00) < 00 Tespectively, and they satisfy:

(LL—E)Yr=0, (Lr—E)Yr=0
with
1 1

o YO = g k(0.

w0 =000 2 07)

Then 1 (x) defined by v (x) for x <0 and g (x) for x>0 is a solution to (£ — E)i) = 0.
This completes the proof of the lemma. O

4. Interface modes induced by Dirac points for time-reversal symmetric
structures

In this section, we study the perturbation to a general time-reversal symmetric photonic struc-
ture with a Dirac point. Throughout this section, we assume that the following holds.

Assumption 2. The operator £ for the unperturbed photonic structure as defined in (1.1)
attains periodic coefficients in the sense of assumption 1 and attains a Dirac point (k = 0,E*)
at the intersection of the jth and the j 4 1th band, i.e.:

E*=E[ =Ej, =E;0)=E;(0).

The configuration when the Dirac point is (k= m, E*) can be treated similarly, and we omit
here for conciseness of the presentation. We shall derive conditions on the perturbation of the
parameters such that a band gap opens near the Dirac point and an interface mode exists for
the perturbed system. The main result of this section is given in theorem 4.7.

4.1. Perturbation of periodic system with a Dirac point
We perturb the periodic operator £ in the following way:
p(x) = pu(x) + 6fi(x),

e(x) = e(x) + 0&(x),

where 0] < 1, fi(x) and £(x) are two piecewisely continuous periodic functions (with period
one) satisfying |||, + ||€]|; = 1. The perturbed operator is denoted by:

1 1 R Y
£ =~y G e ) -

15
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We have £ = L. Foreach E € R, let {1 5 and ¢ » 5 be the unique solution to the follow-
ing equations respectively:
1

(Ls —E)Yp15=0, vg15(0)=1, m%@,l,(s(o) =0,

1 , -
. m%,z,a(o) =1.

Let Wg s denote the perturbed transfer matrix which solves the Ordinary Differential
Equation (ODE) system:

(Ls —E)E2s =0, vYess(0)=

di‘iq/”() JB+EW+0F)Ups(x), Wps(0) = Id, @.1)
where

=_ (Eé(x) 0 ) 40

=50 ) 2

It follows from the theory of first-order linear ordinary differential equations that the solu-
tion matrix ¥g 5(x) depends on the two parameters E and ¢ smoothly. Let M(E,§) = g 5(1)
be the transfer matrix for one period with two eigenvalues be Ag; s and Mg 5. The trace
of M(E,d) is denoted as D(E,d). Under assumption 2, we see from proposition 2.6 that
Ug- (1) =1Id, D(E*,0) = 2. For ease of notation, we write:

VEe,1,0(x) ) ( Ve 2,0(x) )
U:= . , V= 7 : 43
(l@%,l,o(x) B TN 69 43)
Lemma 4.1. The following identities hold:
8D oD

SEE0) =0, S2(E0) =

0,
1 2 1 1
( / UTWde> — < / VTWde> . ( / UTWde>
0 0 0
182 /1 e 2 1 - 1 -
U'Fvdx | — / VIFvdx | - / U'FUdx
28(52 0 0
162D T R 1 o b
28&% UWde : /OUFde -5 /OVWde : /OUWde
1
— < / VTFde> . ( / UTFde>.
2 0 0

The proof the lemma is given in the appendix.

162
2815Q

(=}

*

4.2. Band gap opening for the perturbed system
Let us denote,
0°D 0°D 0°D

aq :@(E 70), ay = 8E85( ,O), as .= W(E ,0)
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Lemma 4.2. There holds a; = gZ—E?(E*,O) <0.

Proof. Note that

1 1 1 1
Wy — 2 Twr7 — 2
/0 VWV = ./0 Vi 2 (x)e(x)dx > 0, /0 u' WU = /0 Vi 1 (x)e(x)dx > 0,

and that

/ol vTwy = /01 Ve (X) Y1 (x)e(x)dx.

Since 1> and 1, are linearly independent, using Cauchy-Schwarz type inequality, we can
derive that:

1 2
/ UTWVdx

1 1
< / VIWVdsx - / U'WuUdx,
0 0

0

whence a; < 0 follows. O

Theorem 4.3. Let the unperturbed operator L defined as in (1.1) satisfy assumption 2. Let
& > 0 be a sufficiently small number. Assume that:

a —ajaz > 0. 4.4)

Then there exists a band gap (Ej' sEis

perturbed operator Ls. Moreover,

) between the jth and the (j+ 1)th band for the

Ef;=E;5(0)=E"+n 5+ 0(5),
E  ;=Ej150)=E+ nté+0(8%),

where

N = —a2—|—\/a%—a1a3 77+: —612—\/0%_511513 (4.5)
aq ’ ' .

aj

Proof. By Taylor expansion, we have:
D(E,8) =2+ ay(E — E*)* +2a,(E — E*) + a36* + r1 (E — E*,0),

where r1(E,§) = O(E — E*)* + 0(4°) is a smooth function of E and § for |§| < 1. Solving
D(E,$) =2 yields:

2 2
- 1
(EE* n “25) _aTasn 1ops
ai

By substituting ¢ = £=£ and r,(1,6) = — 552r1(16,6), we further obtain:

2 2
a as —apa
([+2> = %4’72([,5).
1



J. Phys. A: Math. Theor. 55 (2022) 495203 J Lin and H Zhang

Since a3 — ajaz > 0 and r,(t,8) = O(6) for t = O(1), we see that Gma | ra(t,6) > 0 for

t=0(1) and |0| < 1. Therefore the solution to D(E,d) = 2 can be solved from the following
two equations:

2
Fi(1,6) :r+”2—\/“za‘““3+r2(t §) =

ap 1

2 _
£(8,8) =r+”‘2+¢"za§"“3+rz<r,a>=o

aq 1

Using implicit function theorem, we can deduce that there exists a unique solution that
depend on § smoothly for § < 1 to each of the two equations above. Moreover, the two solu-
tions can be expressed as respectively as:

—aa a a2—aa
2 l ! 3 _724_ l27213+0(5)
al aq aj

It follows that the solution to D(E, ) = 0 has the following form:

—ar++/a? —
E=E+ -2 a“2 DB 5+ 0(8?).
1

On the other hand, it is clear that D(E, ) > 2 holds for E € (E* + etyaTan WT&, E* +

—2TVSTAB WT& ) for some constant 0 < 7 < 1. The opening of the band gap follows by lemma
2.3.
Finally, for § >0, we have:

_ 2 _
Efy = E;5(0) = B+ —27 VO 5 0(6) = B 476+ O(3)
1

—dy — a% —apasz

E  ;=Ejt1,6(0)=E"+ 5+ 0(*) =E*+n16+0(5%).

ai
This completes the proof. O
Before we end this section, we present scenarios for which the assumption (4.4) holds.

Proposition 4.4. Let [i,€ be such that ||fi||p~ + ||€||> = L. If i 2 0,€ > O, then there holds

a% —ajaz = 0.

Proof. See the appendix for the detailed proof. 0

4.3. Impedance function in the band gap for the perturbed system

We assume that (4.4) holds and a band gap between the jth and the (j+ 1)th band is opened
for the perturbed operator Ls. Following section 3.1, for each E in the band gap, we define
the following impedance functions at the boundary point x = 0 for the perturbed operator L;
defined in the left half-line (—o0,0] and right half-line [0, c0) respectively:

_ Yeas(l) o Yeas()
S.s(E) = Ae2,s —VE1s(1)’ Srs(E) = Ae1s —VE1s(l)

We have the following asymptotic expansions for &; 5 and &g 5.

18
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Lemma 4.5. let E be in the band gap (E;%,E;er), say T~ 8 < E— E* < it 6 for some
0 < 7 < 1. Here n* are defined in (4.5).
Then, we have:

Ba(E = E*) + 26 + 0(5?)

Su.0(E) = Va(E—E*)?+2ay(E— E*)0 + a302 — Bi(E — E*) — 510+ 0(5?)’
£ s(E) = Ba(E — E*) + 326 4+ O(5?) ~ ’
’ —/a1(E— E*)2 +2ay(E — E*) + a30% — By (E — E*) — 16 + 0(82)
where

1 1
B = / VIwudx, B = / VIFUdx,
0 0

B, = /0 1 VIWvdx, B, = /0 1 VI FVdx.
Proof. First note that a; < 0 (by lemma 4.2) and that,

D(E,8) =2+ a,(E— E*)?* +2ay(E — E*)d + a30* + O(E — E*)® + 0(5%),
we have,

a\(E—E*)* +2ay(E — E*)6 4 a30*> > 0.

Then the two eigenvalues for the matrix M(E,d) are given by:

D(E,5) — /D(E,0)2 — 4

AE7175: ( ! ) 2 ( ! ) :17\/ﬂ](E*E*)Z+2a2(E7E*)5+(1352+0(52),
D(E,S D(E,0)? —4

Neag = DEDIVDENZS oy for (BB 4 2ma(E— B0+ ast? +0(8?).

Using Taylor expansion and the formulas (A.1), (A.2) and (A.6), we can derive that:

News = 1= \Ja1(E— B+ 2ay(E — E)5 + a3 + O(P),

Aeas =1+ +/a(E—E*)?+2ay(E — E*)d + a30? + 0(6?),

and that,
YE1,5(1) =14 B1(E—E*) + 316+ O(E— E*)* + 0(8%);
VEp,5(1) = Bo(E—E*) + 26 + O(E — E*)* + O(57).
Therefore the asymptotic of £, s(E) and &g 5(E) follows. O

4.4. Existence of an interface mode for the perturbed system

In this section, we establish the existence of the interface mode that is generated by perturbing
a periodic system with a Dirac point. We fix 6 >0 and denote:

€5+ (x) = e(x) £06(x),  ps+(x) := pu(x) £ 6/ (x),

1 dl 1 Ay
Ls11(x) = £5.4(x) dx (,Ué,:t(x) dx) .

19
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We also define:

_Jelx) =dé(x), x<0,
es(x) = {g(x) 4 6E(x), x>0,

and the associated differential operator:

1 d( 1 dy
as(x)dx<ua(x)dx

Ls_, x<O0;

Fap(x) i= —
6¢(X) £57+, x> 0.

) , or equivalently, Ls:= { 4.6)

We shall make the following assumption on the perturbation which ensures the existence
of a common band gap for the left and right semi-infinite perturbed periodic systems.

Assumption 3

2
2 1 1 1
a _ LOIDIED) g g / UTFVdx | — / VIEVdx | - / UTFUdx | >0,
2 2 00 0 0 0

where F is the matrix defined in (4.2) and U and V are defined in (4.3).

Lemma 4.6. Under assumptions 2 and 3, the intersection of two band gaps

E Nn(ET E s _) for the two operators L;  and Ls, _ is not empty.

+ —
(B s Ejrrs ) N (ESs -

Proof. Recall thata; < 0 (by lemma 4.2). We see that the inequality (4.4) holds. In light of the-
orem 4.3, the perturbation &, ;1 will create a band gap (E;r s4Ei1s, ) at E* for the operators
ﬁg’i. In addition,
Els . =E £n70+0(8%?),
Ejprsa =B £055+0(5%?),

where 1t are defined in (4.5). Since a; < 0,a3 >0, we have n~ <0 < n*. If a, <0, then
|n~] < |7, and consequently:

(Efs 1 +Efpr ) VESs Efy5.)=(E" = n"[5+0(6),E* + |1~ |5+ 0(52)).

On the other hand, if @, > 0, then |~ | > |"| and there holds,
(Efs o Erprs ) VEs Efy 5 )= (E" = nt[0+0(6%),E* + [ [0+ 0(5°/%)).
O

We are ready to investigate the existence of an interface mode in the band gap for the operator
Ls.

Theorem 4.7. Let L be the operator defined in (1.1) satisfying assumption 2 and Lg be its
perturbation defined in (4.6) satisfying assumption 3, then there exists an interface mode for
Ls if § is sufficiently small. The same holds when the Dirac point occurs at k* = .

Proof. Without loss of generality, we only consider the case k* =0 and a, < 0. The other
cases can be proved similarly. For a, < 0, the common band gap is given by:

(Efs 0 Eis ) V(Efs Efys )= (E" =m0+ O(8°),E* + 16+ 0(6*2)).

J:6,=>

20
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We further consider two cases depending on whether B = fol VIEVdx = 0 or not. We first

consider the case Bz = 0. For the operator L5 1, we consider the impedance function for the
right half-line [0,00) at the boundary x = 0:

__ Ypas()
$ra(E) = Mes —Yens(1)

By lemma 4.5, we have:

txs(E) = Ba(E—E*) + 50 + O()
fo —\/a1(E—E*)2 +2ay(E — E*)d + a30% — Bi(E — E*) — B10 + O(82)

Recall that,

1 2 1 1
5= / UTFVdx | — / VIEVdx | - / UTFUdx | .
2 0 0 0
In the case Bz =0 we have:

asz = 25%

Hence we can find 0 < 71 < such that for all E satisfying |E — E*| < 710,

a1 (E— )2 + 2ay(E — E)6 +asd? + 51 (E— E°) + 1] > 16

for some constant ¢; > 0. Therefore, &g 5(E) is well-defined for E satisfying |E — E*| < 716
and for § sufficiently small.

For the operator L5, _, similarly we consider the impedance function for the left half-line
(—00,0] at the boundary x = 0:

B 1/))572,—6(1)
§L,—5(E) = Xep,—s —YE1,—5(1)

Using lemma 4.5 again, we have,
_ Br(E—E*) = 6+ 0(5?)
\/al(E— E*)2 — 2a2(E— E*)5+a352 — B (E— E*) + B+ 0((52)

Again & _s(F) is well-defined for E satisfying |E — E*| < 710.
By lemma 3.2, there exists an interface mode for Ls at energy level E if and only if:

Ers(E) =&,—s(E).

Lett= (E—E*)/). For —1; <t < 71, we define:

&r—s(E)

Bot + B2 + O(0)
= E)—¢& _s(E)= =
g(t) §R,5( ) fL’ 6( ) —\/(111‘2+2(121‘+a3—ﬁ1t—,61 +0(5)

Bat — B2+ O(6)

B Vait?r —2at+ a3 7ﬂll+ﬂ~1 +0(5)-

It is clear that:
£(1) = &(1) + 0(6),
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where
_ Bot + B L —Bot+ s
7\/alt2 +2art+az 7ﬁ1t7,3] \/all‘2 —2at+az — ﬂﬂ‘#’ﬁ]

One can check directly that £(7) is odd, i.e. £(r) +&(—1) = 0.

We now choose 0 < 7, < 1 such that |7»n™| < 71 and £(7on™) # 0. It then follows that:
E(mn™) - &(=mn™) <0
Therefore for 4 small enough, we have,

E(rant)-£(—mn™) <.

Hence there exists aroot to £() = 0 in the interval (—,n ™, 70 ™). This root gives the existence
of an interface mode.

Finally, we consider the case when Bz # 0. The above argument may not get through
since the leading order term in the denominators of the two impedance functions &g s(E) and
&1,—5(E) may vanish for E in the common band gap. To address this issue, we consider the
reciprocal of the impedance functions instead. Then a similar argument leads to the conclusion
that:

£(1)

1 1
rs(E)  &,—s(E)’
for some E in the common band gap. This implies the existence of an interface mode. O

Remark 2. The Bulk-interface correspondence for the interface mode is not formulated in the
above theorem. Another question is the stability of the interface mode under perturbations that
are not necessarily small. One formulation of the stability question is to show the persistence
of the interface mode under a continuous family of perturbations to the operator Ls such that
the band-gap structure below the gap for the two periodic operators defined over the two semi-
infinite intervals remains unchanged during the perturbation. We leave these as the future work.

Finally, we present the scenarios for which assumption 3 holds, and consequently the theorem
above can be applied. We leave the proof to the appendix.

Lemma 4.8. Let the periodic operator L in the form of (1.1) that attains periodic coefficients
in the sense of assumption 1. Assume that p and € are even functions and that (k= 0,E = E*)
is a Dirac point. Let U,V be defined by (4.3). Furthermore, we assume that i and € are odd,

then:
(I Lo @ L ?
/ VIFVdx | - / U'Fudx | =0, == / UTFVdx
0 0 2 0

Moreover, we can choose [i and € such that:

1
/ UTFVdx # 0.

0

5. Photonic structures with inversion symmetry

In this section, we investigate time-reversal symmetric photonic structure with additional
inversion symmetry. That is, the following assumption holds for the periodic operator £
in (1.1).
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Assumption 4. The operator £ attains periodic coefficients in the sense of assumption 1.
Moreover,

PL=LP,
where P is the parity operator defined by:
Pi(x) = P(—x),

for any function v defined over R.

Under the above assumption, we see that £(x) = e(—x), u(x) = p(—x), or equivalently, (x) =
g(1 —x), u(x) = u(1 —x). Such topological structures were investigated in [38] and it was
shown that localized mode exists at the interface of the two semi-infinite periodic structures
with different bulk topological indices. Inspired by this work, we would like to provide a
rigorous theory for the existence of an interface mode for such a structure and its connec-
tion to the bulk topological index, which is defined via the quantized Zak phase. In addition,
we investigate the stability of the interface mode under perturbations that are not necessarily
small.

5.1 Bloch modes and parity

We begin with some properties of the Bloch modes when the structure attains inversion sym-
metry. The following result is obvious.

Lemma 5.1. Under assumption 4, if ¢ ; x(x) is a Bloch mode of the operator L for the jth band
with the Bloch wavenumber k, then Py i is a Bloch mode with the Bloch wavenumber —k.

Lemma 5.2. Under assumption 4, the Bloch modes ¢ j ; are even or odd when k=0 or m over
an isolated band E](k) In addition, when k=0 or , there holds @ = cE,1 07 @ = cVE 2
over the periodic cell [0,1] for certain constant ¢ depending on whether ¢ j is even or odd,
and g1 and g, is the solution of the initial value problems (2.3) and (2.4) respectively.

Proof. Consider the Bloch mode ¢ o for k = 0 which solves the following boundary problem:

(L—=E;j(0)pj0=0, wjolx+1)=w;o(x).

One can check that Py ¢ is also a Bloch mode for £ = 0. Since the multiplicity of the Bloch
mode for k=0 is one (propositon 2.7) and that ;¢ is real-valued, it follows that Py ;¢ =
i<pj70(x), ie.:

@jo(—=x) =£p;o(x).

Note thatif ¢; o is even, then ¢'; ((0) = 0 and ¢ ;0 = cy/E,1 for some constant c. Similarly, if
¢j01s odd, then ¢ o = ctpg » for some constant c. A parallel argument leads to the conclusion
for the Bloch mode ¢ .

O

Definition 2. We say that the Bloch mode ¢ ; attains an even-parity (odd-parity) if ¢ ; is an
even (odd) function.

Next we investigate the change of parity for the Bloch modes at k=0 or m when the energy
crosses a band gap. A crucial tool we used is the oscillation theory for Sturm-Liouville oper-
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ators, see for instance [37]. To be more precise, let us denote E7, ES, E7, EY the jth eigenval-
ues of the operator £ restricted to the unit cell [0, 1] with the followmg boundary conditions
respectively:

(a) Periodic boundary conditions: ¥(1) = ¥(0), «’(1) =1'(0);
(b) Semi-periodic boundary conditions: (1)

(c) Dirichlet boundary conditions: ¥ (1) = 1(0)

(d) Neumann boundary conditions: %’(1) = ¢’(0) = 0.

We have the following theorem on the eigenvalues above, see for instance theorem 13.10
in [37].

Theorem 5.3. The eigenvalues E ES ED EN (j =1,2,3,...) defined above for the periodic
operator L in the form of (1.1) attam the followmg mterlacmg property:

EY<EV <E§ <{EY,EP} <ES <Eb < {EQV,EQ}\W
<En 1<E2n 1 {EZn?EZn ]} E§n<E <{ 2n+1> n}<E§n+l<'“7

here the expression ES < {EY,EP} < ES means that E§ < min{EY,EP} < max{EY,EP} < ES,
and the same meaning applies to others.

Based on the above theorem, we are able to show the change of parity for Bloch modes across
band gaps, which is stated in the theorem below:

Theorem 5.4. Let L be a periodic operator in the form of (1.1) that satisfies assumption 4.
Assume that there is a band gap between the jth and ( j + 1)th bands, then the Bloch modes at
(k, E;r) and (k,E}. ) attain different parity, where k=0 or m.

Proof. Without loss of generality, we assume that k = 0 so that Ej“ =E;(0),E; ;= E;+1(0),

and the Bloch mode ¢; g at (O,E;-L) is even. Then ¢ ; o satisfies the following boundary value
problem:

(E _E;‘F SOJ,O = 07
©j,000) =g, 0(1),
SDIj,o(O) :SDIJ',O(I) =0.

Hence Ejr is a common eigenvalue to the operator £ for both the periodic boundary condition
and the Neumann boundary condition. We prove by contradiction that ¢ ;19 is odd. Other-
wise, if ¢ ;41,0 is even, then £, is also a common eigenvalue to the operator L for both
the periodic boundary condition and the Neumann boundary condition. Note that E <E;,
are two neighboring eigenvalues to £ with the periodic boundary condition. We elther have
E;r EY | Ei = EY or E+ EIZD,”EJ_+1 E% ., for some integer n. By theorem 5.3, the
former is impossible since there is no eigenvalue to £ with the semi-periodic boundary condi-
tion inside the band gap. The latter is also impossible since both E;!’,E;H are eigenvalues to
L with the Neumann boundary condition. This contradiction proves that ¢ ¢ should be an
odd-parity mode and this completes the proof for the case k = 0. The case k = 7 can be proved
in a similar manner. O
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5.2. Zak phase under inversion symmetry

Consider the periodic operator £ that satisfies assumption 4. Following section 2.3 and in view
of lemma 5.1, we construct the Bloch modes for the jth band of £ as follows:

¢k (x) '
o 0Sk<m, ¢ #0,

Pialx) = 4 Ty k€ {07} and 6,4 =0, G

0j—k(—x), —m<k<O.

The periodic part of ¢ ; is given by u; i (x) = ¢ j,k(x)e_””‘, and it satisfies:
wjr(x) =uj (—x), —m<k<O.

We calculate the Zak phase using the formula (2.21). First, there holds,

0
(9Ltj7k - 4 8141'),/(
[W <8k ’uj"k)xdk/o ( Gk ,uh_k Xdk

T 1 . X
. /0 /0 aj’a;]f()ﬁj,,k(x)e(x)dxdk

_ /0 i /O 1 %ﬁj’k(—x)a(—x)dxdk
:_/OW/Iauj’k(l_x)uj’k(l—x)e(l—x)dxdk

e () = lim y(3) = i () =m0 0) = 00 ()
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Similarly, we have:

1, if SDj,Tr(x) = “Pjﬂr(_x%

(efl'Zﬂ'Xu - +>”‘,7r)X: }
P —1, iy (x) = = ().

(5.2)

Therefore, by substituting the above into the formula (2.21), we obtain the following the-
orem.

Theorem 5.5. Let L be a periodic operator in the form of (1.1). Assume that assumption 4
holds. Then the Zak phase for the jth band is given by:

0. — 0, ify;o(x)andp;(x) attain the same parity,
T ), if jo(x) and @ ~(x) attain different parity.

In the presence of a Dirac point, we have the following result on the Zak phase, which is a
direct consequence of the theorem above and lemma 2.9.

Theorem 5.6. Let L be a periodic operator in the form of (1.1). Assume that assumption 4
holds and that the jth and (j+ 1)th bands touch at the Dirac point (k = O,Ef), then

0, if ¢jx(x),0j+1,x(x) attain the same parity;

5.3
T, if ©jx(x),0j+1,x(x) attain different parities. >3)

0 i+ 0 j+1 = {
Similar result holds if the jth band and the (j + 1)th band cross at the Dirac point (k =, Ej')

5.3. Bulk topological indices

Assume that there is a gap between the jth and (j + 1)th bands of the periodic operator £ with
the inversion symmetry. We define an index for the jth band of the spectrum as:

i = (1) O (5.4)

in which 6,, is the Zak phase for the mth band, and £ is the number of Dirac points below the
Jjth band. The relation between the parity of the Bloch mode 1/ ; at band edge (k,E;’) and the
bulk index +; is given in the following theorem.

Theorem 5.7. Let L be an operator in the form of (1.1). Assume that assumption 4 holds and
that there is a band gap between the jth and (j+ 1)th bands. Then the bulk topological index
for the jth band ; only takes the values x-1. In addition, vy; is I and —1 when the Bloch mode
at band edge (k, Ej) is even and odd respectively.

Proof. Note that for the first band, we have E|” = E;(0) = 0 and the associated Bloch mode
is a constant function. Since E1+ = E;(m), by virtue of theorem 5.5, v; = 1 and —1 when the
Bloch mode % at (7T,E1+) is even and odd respectively. Now we prove by induction and
assume that the statement holds for the band E, (k) with n <j. If E;_, (k) does not cross with
E(k), then an application of theorems 5.4 and 5.5 yields y; = —e"‘)ffyj_l, where 0; is 0 or .
Otherwise, if E;_; (k) and E;;(k) cross at the Dirac point (k,E; ), applying theorem 5.6 gives
vj=—e 0149y, 5 where §;_1 +60; =0 or 7. The proof is complete. O
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5.4. Impedance functions in the band gap
In this section, we derive several properties for the following two impedance functions:
Yea(1) Yea(1)
&(BE)=—""—~, &E)=T—""-"C,
A2 —Ye1(1) Mg — e (1)
defined in section 3.1 for E in the band gap and for the system with inversion symmetry. We

first present a preliminary lemma.

Lemma 5.8. Assume that the operator L satisfies assumption 4. Further assume that the jth
and j + 1th bands attain a gap (E}*',E;_H ).

(a) Forall E € (Ej',E;H), we have Yp,(1) #0, A1 — e (1) #0, and Mg — e (1) # 0.
(b) If Ye2(1) =0 for some E ¢ (Ej',E;_H), then

1
vt 222 g

Proof. We first show that 1g (1) # 0. Assume otherwise that ¢g»(1) = 0. Then both func-
tions ¥g 2(1 — x) and 1g 2 (x) are solutions to the following boundary value problem:

(L—-E)p=0, 4(0)=v(1)=0.
Thus ¥g (1 —x) and g (x) must be linearly dependent. Since both are real-valued, we

see that 1z (1 —x) = £¢g(x). It follows that 9y ,(17) = Fibp,(0F) = Fu(0T). Since p
has period one and is inversion symmetry, we have p(0%) = (07) = pu(17). Therefore

M(E) = < 1¢E,1(17) 11/15,2(17) ) _ ( 17/15,1(17) 0 )
mWE,l(l_) m¢%,2(1_) mle,l(l_) +l)’
We see that =1 € {\g 1, g2}, which is a contradiction to the fact that [Ag;| <1 and
|Ag2| > 1 in the band gap.
We next prove that Ag | — g1 (1) #0. If Ag; —g,1(1) =0, then by using det(M(E) —
Ag,1) =0, we have:

1
Vep(1) - —< g (1) =0,
which yields 1z | (1) = 0. Then both functions ¢z (1 —x) and ¢/, are solutions to the fol-
lowing boundary value problem:
(L—-E)=0, ¢'(0)=¢'(1)=0.
We can thus derive that ¢ = £1)g ;. Then,

Y1 (0) = 29, (1) = %1,
Hence

ey - () )y (41 vl
mw/E,l(l) m%’az(l) 0 im%;g“) ’
Again, this leads to =1 € {\g1, Ag 2}, which contradicts to the fact that the eigenvalues are

in the band gap. The inequality A\g> — g 1(1) # 0 can be proved in a similar manner. This
completes the proof of (a).
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We now prove (b). Note that,

(L—E)e2=0
VE2(0) =0, 1755 ¥k (0) = 1.

Let ¢ (x) = aw“(x) , then

{(5 —E)Y =y,

1(0) =0,4'(0) =0
Multiplying both sides of the equation (£ — E)9) = g by e(x)¢g2(x), we obtain:

/Ol ((;¢/)/+E€(x)1/)> Ve (x)dx = /01¢125,2(x)€(x)dx

Using Green’s theorem and the boundary conditions that 1(0) = 0,1’ (0) = 0,g»(0) =0,
we further derive that:

( )sz / I/}EZ dx>0

This gives the desired inequality and completes the proof. 0

Lemma 5.9. Assume that the operator L satisfies assumption 4. Further assume that there is a

band gap between the jth and the (j + 1)th bands. Then the following holds for E € (E+ E;):

(a) If the Bloch mode at the band edge (k, Ej') attains the odd-parity for k=0 or 7, then
&r(E) <0, and ég(E) — 0as E — E| and &p(E) = —coas E — E |, respectively; On the
other hand, §(E) >0, and &, — 0 as E — Ejr and &, — +oo as E— E., respectively.

(b) If the Bloch edge mode at (k,Ej) attains the even-parity, then Eg(E) > 0, and Er(E) —
+ooas E— Ef and §g(E) — 0 as E — E | respectively; On the other hand, &(E) <0
and {1 (E) — —o0 as E — ET and §,(E) — 0 as E — E | respectively.

Proof. Without loss of generality, we consider only the case k=0 and the Bloch mode ¢;
at (O,E;r) is odd. The proof for other cases is similar. It also suffices to prove for the func-
tion &g (E) since the function &, (E) can be treated similarly. First, by lemma 5.2, ¢;o(x) =
C"/’Ef 2 (x) for some constant c. Therefore wET*Z(l) = 1ZJE;r72(0) =0 since ¢, is periodic of
period one. By lemma 5.8, we have:
ea(1)
T(ET) 'le;r,z(l) > 0.
O (1
Since ¢E+ 2( )= ;Ejz(o) >0, waig()(Ej“) > 0, and consequently, ¥g (1) > 0 for E €
(EJr Eﬂrl)
We next define
8(E) :=Ap1 — e (1).
By theorem 5.4, ¢ ;11,0 is even. Thus @10 = cqu;] , for some constant ¢ and we have
ij;l 2 ()= 77ZJE;+1’1 (0) = 1 using the periodicity of ¢ o. It follows that:

g(Ej) = — - (1)=1-1=0.

Eipiol JISE
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On the other hand, since

D(E) — D(E)2 —4
A1 = > ,

-1 28 )

we have

Itis clear D(E) — 2 and D'(E) <0 as E — E7 . Therefore

lim g'(E) = oo, (5.5)

whence g(E) < 0 near £ and hence over the whole interval (E;-L,Ejjr ;). This proves that

&r(E) = £225) < 0 over (E E7 )
We now prove that {g(E) — 0 as E — Ejr and {g(E) — —oo as E— E; ;. Recall that

’(/JET’Z(l) = 0. There are two cases: g(Ej) #0 or g(Ejr) = 0. In the former case it is clear

that &g (E) — 0 as E — E . In the latter case,

e (1)
l :
lim &(E) = lim Veall) ok =0,

E—E' E—ET g(E) E—EF & (E)

where we used the fact that lim,_, .+ ¢'(E) = —oo if g(Ejr) = 0 (the proof is similar to (5.5)).
J

Therefore, in both cases we have {g(E) — 0 as E — E+

Finally, we show that {g(E) — —occ as E— E} . Since g(E7, ;) =0, we need only to
show that ’(/JE— ,(1) # 0. Indeed, assume otherwise z/)Ef ,(1)=0= wE;] ,(0). Recall that

Y- (1) = 1 and that:

Jj+1

detM(E7, ) = det 1[’51 71(1) QZ}E; ,2(1) det 1 0
e e A A =de [ [ .
b ﬁu}/E;ﬂ,l(l) ﬁWE* ,2(1) er ,1(1) W¢E7+],2(1)

J+1 jt+1
We have,
I 1
— .- ()=1= P! 0
u(l)%wz() MONCIE
Since 1(0) = p(1), 1/)’ ,(1)= (0) Therefore we can derive that 7/’15* 2 is a periodic

function with period one and hence gp ,+170 ¢, , for some constant c. ThlS contradicts to
' +102

the established fact that ¢ ;119 = ct),~ . This completes the proof of the lemma. 0
j+1°

5.5. Interface modes induced by bulk topological indices

We consider a photonic system which consists of two semi-infinite periodic structures for x < 0
and x>0 respectively.
The corresponding periodic differential operator is:

_ LA 1 oap)
L= Ej(x)dX<uj(X) dx>7 bt
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We assume that both operators satisfy assumption 4. The differential operator for the joint
structure is given by:

X {ﬁlw(xx x<0,

LoD =9 fp), x>0, (56)

We investigate the existence of interface modes for the operator £. In what follows, we
denote the quantities associated with the operator £ ; using the superscript j (j = 1,2), such as

the energy level E,(n] ), the Bloch mode 7,/1(‘7 )

m k> ELC.

Theorem 5.10. Assume that the following holds:
(a) The operators Ly and L, satisfy assumption 4 and attain a common band gap:
1), 1),— 2
L= (EQ) BN N (EDH En ) #0

for certain positive integers m; and m;.

(b) The bulk topological indices 'y(l) # ’)/,,(122) for the operator L, and L,.

Then there exists an interface mode for the operator L defined in (5.6). In addition, the
number of interface modes are given by the number of roots to the equation:

¢E)=¢VE) - eP((E)=0 forEcl (5.7)

Proof. By lemma 3.2, there is an interface mode of £ at energy level E if and only if:

¢E) =V (E) - (E) =0.

Without loss of generality, we consider the case when the common band gap of the operat-

ors £ and £, is given by I = (Eﬁ,},) 7E,(nl ), Jrl) Moreover, 7,(,,11) =1 and *y,(nzz) = —1 for the two

operators. Then the Bloch mode 1/)( ) [« at the band edge (k, E,(,,]l)’+) for the operator £, is even
while the Bloch mode 1/1( « at the band edge (k,Ep ). +) for the operator £, is odd. By lemma
5.9, fL ( ) <0 and§L ( ) = —o0 as E—>E,(,L1)Jr andf(l)( E)—0as E—E! )’1 respect-
ively. On the other hand, §(2)( E) <0 and 5(2)( E)—»0asE— E(l) *and ¢ 2)( E) — —o0 as
E— El(nz)-H
near E(l) " and ¢(E) > 0 for E near E,(nl )jr |- It follows that there exists a root over the interval
I for £(E) =

respectively. Therefore, for E in the common gap I, we see that £(E) < 0 for E

O

To illustrate the interface mode of the operator £, we consider a joint structure, where the
periodic medium on the left consists of two layers in each period, with a thickness of 125,” =

0.42 and E,gl) = 0.58 respectively. The permittivity values of the two layers are 55,1) =3.8and
5,(11) =1, and the permeability values are ;Lg ) = u(l) = 1. The periodic medium on the right
also consists of two layers in each period, with the physical parameters in each period given by
02 =038, 0% =0.62, e =42, =1, and ¥ = 1{”) = 1. The band structures of the
two periodic media and the Zak phase for each band are shown in figure 1. The bulk indices
in the band gap between the seventh and eighth band are 77(1) =1 and 77(2) = —1 respectively.
The operator L attains an interface mode at a frequency in the band gap, which is shown in

figure 2.
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Figure 1. The band structures of the two periodic media and the Zak phase for each
band.
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Figure 2. The interface mode of the operator L in the band gap between the seventh and
eighth band.

5.6. Stability of interface modes

Consider a photonic system L of the form (5.6) that attains an interface mode over a com-
mon spectral band gap I of two operators £; and £,. Assume that the structure is perturbed
locally with a defect region (d;,d,), in which d; < 0 < d,, and the relative permittivity and
permeability of the structure attain the following values:

sl(xidl)a )C<d1, [L](X*dl), x<d17
e(x) = eq(x), d<x<d, and  p(x) = pa(x), di <x<dy,
82()67(12), x>d. ,uz(X7d2), x>ds.

We denote the differential operator for the perturbed system by L, and denote:
| T
28 = (V09,1009

where ¢ solves the differential equation (£, — E)ib = 0.
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For j =1,2, let

= (g0 ) e = ()
7 Aeh =¥ (1) 7 Aih =g (1),

be the eigenvectors of the transfer matrix M(/) (E) as defined in (3.1). For each E € I, we nor-
malize the eigenvectors Vg )1 and Vg )2 by letting V(Ej )1 = Vg )1 / ||V§5] )1 || and \N/g )2 = stj )2 / HVéj)zH
and extend them continuously over the closure of the interval 1. Here the norm || - || is the stand-
ard Euclidean norm in R?. Let M,(E) be the transfer matrix over the defect region (d;,d5) such
that ®(dy; E) = My(E)®(d;; E). We see that the localized state is retained for the perturbed
system if and only if:

My(E)VE) = eV, (5.8)

holds for certain E € I and some nonzero real number c. A natural question is how large per-
turbation is allowed for the defect medium parameters so that the condition (5.8) holds and the
interface mode persists for the operator L.

Theorem 5.11. Assume that L and L, attain the same band gap I:= (E,(,,I,)"F,E,(nl])fl) =
(E,(,,zz)"s_,E,(nzz)fl) and the bulk topological indices W,SJR and 7,%) are different for the two oper-
ators. If:

m
max {2l ) BNl ) } - (o = i) < 2. (5.9

holds for any E € I, then the operator L attains an interface mode.
To prove the theorem, we express the solution vector ¢ as:
®(x;E) = p|sind,cosd]” = p[cosb,sind]”,

in which the polar angle 0 := 5 — 6 represents the angle between the x-axis and the vector
® on the plane. The radius p and the angle 6 are called Priifer radius and angle, respectively
[9]. Both 6 and 6 are unique up to an additive constant integer multiple of 27. By a direct

calculation, p, 6 and 0 satisfy the following equations:

1
(logp)' = E(M — Ee)sin(20), (5.10)
0" = pcos? O + Eesin® 0, (5.11)
0" = —psin® 0 — Eecos® 0. (5.12)

In what follows, we view p, € and 0 as functions of x and E.

Lemma 5.12. Let 0(xo; E) = 0y, then for any fixed E > 0, the Priifer angle 0(x;-) is an increas-
ing function and the polar angle 0(x;-) is a decreasing function.

This is obvious by noting that # > 0 and 6" < 0. Hence the solution vector ® rotates clock-
wisely as x increases for fixed E.

Lemma 5.13. Let 0,(x; E) and 0,(x; E,) be the Priifer angle of the solution vector with the
energy Ey < Ej respectively. If 01 (xo; E1) < 02(xo; E2), then 0 (x; Ev) < 02(x; Ey) for all x > xy.

Lemma 5.14. Let 0(xo; E) = 0y, then for any x > xo, 0(x; E) is an increasing function of E.
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D (dy, E»)

Ue / T Uq x

Figure 3. Left: Rotation of the vector ‘71(51% from Uy := (—1,0)" to U, := (0,1)T as E
increases from E to E,; Right: Rotation of the vector ffgi from U, := (0,1)7 to U :=
(—1,0)7 (blue) and rotation of the vector ®(dy; E) (red) as E increases from Ej to E.

The proofs of lemmas 5.13 and 5.14 can be found in corollary 2.3.2 and theorem 2.3.3 of [9].

Proof of theorem 5.11. Let /:= (E},E,) be the common band gap of the two operators £,
and £,. Without loss of generality, we assume that fy,(nl,) =1and f)/,,(fz) = —1 so that the Bloch
modes 77/151]3( and 1,[),(33( at the band edge (k,E;}) for the operator £, and £, are even and odd

1m
respectively. In view of lemma 5.9 and observing that the impedance function £ él) is equal to

the ratio between the first and the second component of V(EI%, as E increases from E; to E»,

either \7‘;; or —\”/f;; rotates from Uy := (—1,0)7 to U, := (0,1)7 in the second quadrant (cf
figure 3, left). On the other hand, either f/g)l or —V(Ezi rotates from U, to U; in the second
quadrant.

We only consider the case when Vg; rotates from U, to U,. The other scenarios can be
proved in a similar fashion. If one sets ®(dy;E) = Vg% then by lemmas 5.12 and 5.13, the
vector ®(dy;E) := My(E) V(El% rotates clockwisely as E increases from E; to E,. The corres-
ponding Priifer angle 6(d; E) increases continuously. If (5.9) holds, by (5.11), 6’ < 57755
for all x € (dy,d,) and E € I. We obtain:

A0 :=0(dsE) ~9(diiE) < 5 VEEL (5.13)

As such ®(dy; E)) is located in the second quadrant while ®(d,; E,) is located in the first
quadrant. Therefore, the continuity of the Priifer angle 6(d;; E) implies that (5.8) holds for
certain E in the band gap as ‘Nfg or —\N/gi rotates from U, to U, in the second quadrant with
increasing E (cf figure 3, right).

O

If the condition (5.9) is violated, the stability question is more subtle. Here we provide an
answer for a special scenario when the defect only consists of one layer.

Theorem 5.15. Assume that Ly and L, attain the same band gap and the bulk topological
indices are different for the two operators. If £4(x) = €9 and pq(x) = po for certain constants
€o and i, then the operator L, attains a localized state for any 9 > 1, po > 1, and d :=
dy—dy; 2 0.
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Proof. Similar to theorem 5.11, we assume that the two operators £, and £, attain a common
band gap I:= (E;,E,), and the toplogical indices for the two operators are 1 and —1. We
denote the trajectory of the end point for the solution vector ®(d,; E) by ~ as E increases from
E| to E; in the band gap. Since ‘7552)1 or —‘N/ﬁ rotates from U, := (0,1)” to U, := (—1,0)7 in
the second quadrant, while the vector ®(d,, E) rotates clockwisely as E increases, we deduce
that (5.8) holds as long as « crosses the x or y axis on the plane. Next we show that this is true
for any €9 > 1, o = 1, and d in the defect layer.

Note that either V(E]; or —\”/f;; rotates from U to U, as E increases from E| to E,, for brevity
we only consider the former. The transfer matrix M, is explicitly given by:

cos(wny d) K sin(wny d)

My(E) = whd ) (5.14)
«(E) L sin(wngd)  cos(wny d)
o

in which w = v/E and ny = |/Z4fiq. Let Vg; = (—vi(E),v2(E)) withv(E) > 0and v2(E) >0,
and wy; = wny d, then:

— cos(wa) —— sin(wy)
®(do; E) = vi(E) | wna in(wg) +2(E) (W”d ) : (5.15)
[ Si\wa cos(wy)

In particular,

T
sin(wg2), COS(wd,z)) )
wong

T
q)(dz;El) = (—cos(wd’l), Wit sin(w‘“)) s q)(dz;Ez) = ( H
with wj= mandwd,j = andd(j =1,2).

Now assume that ®(d,; E;) lies in the first quadrant with wy; € 2nym + [%,ﬂ'] for certain
integer n; > 0. We only need to consider the case when ®(d,; E») also lies in the first quadrant.
We observe that wg» € 2nym + [0, g] for certain integer n, > n;. Note that ®(d,; E) is located
in the lower half plane when w € 2n;m + (7r, 37“) , and in the left half plane when w € 2n7 +
(37”,27r). Thus the trajectory ~ crosses both the x and (or) y axis. One can draw the same
conclusion if ®(d,, E;) lies in other quadrants, and the proof is complete. O

For a generic defect, the existence of interface modes for the perturbed topological structure
is not guaranteed when the condition (5.9) is violated. Here we construct counter examples
when the defect consists of two layers and the interface mode disappears. The permittivity and
permeability values in the defect regions are given by:

€a1, di <x<dx, Lat, di <x<d,,
calx) =4 and  pigx) = ¢
€d,2, d, <x<d, K25 d. <x<d,,

where the constants €, ; and pq ; (j = 1,2) are to be specified in the following. Similar to
the previous discussions, we assume that the operators £; and £, attain the same band gap
I:= (E,E,) and the bulk topological indices for the two operators are 1 and —1, respectively.
Furthermore, as E increases in the band gap, the eigenvector Vg; rotates from U := (—1,0)7
to U, := (0,1)7 in the second quadrant.

Let ®,(x;E) and ®,(x;E) be the solution vector for the equation (L, — E)i) =0 with
®y(dy;E) = Uy and @ (dy; E) = U,, respectively. The corresponding polar angles 0,(x;E) and

0.(x; E) satisfy the equation (5.12). Define N 0, — 0., then Af solves the equation:
(AG)' = (Eeg — p1q) sin(f; +0,) sin(Af) in (dy,ds). (5.16)
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First, we choose 41 and pg4; such that Ejegq — pg > 0. Note that és(dl;El)—&-

0.(d;Er) = 37” Since both 6 and 6, are decreasing functions of x, one can choose d, such

that:

O0y(de;Er) +0o(d; Ey) = 7. (5.17)

Noting that Af(dy; E;) = 7 and using (5.16), it follows that (Af) < 0in (dy,d.) and con-
sequently:

0< Ad(d,,Ey) < % (5.18)

A combination of (5.17) and (5.18) yields:

g<65(d*;E1)<77 and O<§e(d*;E1)<g. (5.19)

Next we choose €42 and pg» such that Ejeg2 — pq2 < 0. Furthermore, let d, be a real
number such that:

0s(da; E) (5.20)

=
We deduce from (5.18) that 0 < ée(dz;El) < 3, since 5 < 6,46, < and (Aé)’ <0in
(dy,dy). If E, — E is sufficiently small, one can conclude that:

0< 0,(dy; E5) < g (5.21)

From (5.20) and (5.21), it is seen that the solution vector ®(d,;E) := M, (E \7(1) rotates
5 E2

in the first quadrant for E in the band gap. On the other hand, the eigenvector Vg} or —‘71(522
rotates from U, to Uy in the second quadrant. Therefore, the condition (5.8) for the existence
of interface modes does not hold for any E € I.

6. Resonance of the finite topological structure

In this section, we consider the topological structure of finite size that is extended over the
interval (N, N,), where Ny is a negative integer and N is a positive integer. The structure is
periodic on the left and right of the origin respectively. More precisely, the permittivity ey(x)
and permeability py(x) of the finite structure takes the following form:

El(x)v N1<X<O, :U/l(x)a N1<x<07
en(x) =1 er(x), 0<x<N,, and  py(x) :=< pa(x), 0<x< Ny,
1, elsewhere. 1, elsewhere.

in which ¢; and p; (j = 1,2) are piecewisely continuous periodic functions with period one.
The corresponding differential operator is:

e LA (1 dY
Lny = en(x) dx (uN(x) dx) '

When an incident wave 1) = ¢™“* impinges from the left of the structure, where w is the
frequency, the structure gives rise to the transmitted field 1" = t(w) ¢~ and the reflected
field 1"/ = r(w)e~™*, The total field is ¢ = 1™ + )™/ for x < Ny and ¢p = 9" for x > N,
and it satisfies:

(Ly—w?)p =0, Ny <x<Ns. 6.1)
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The above scattering problem attains a unique solution for real frequency w. If the resolvent
associated with the scattering problem is extended to the whole complex plane by analytic
continuation, it attains complex-valued poles that are called the resonances of the scattering
problem, and the associated nontrivial solutions are called quasi-normal modes. Equivalently,
the pole w and the corresponding quasi-normal mode 1 solve the following homogeneous
scattering problem when /"¢ = 0:

(Ly—w?)) =0, Ny <x<Ny, (6.2)
1 dp(N) . _

N + iwth(Ny) = 0, (6.3)
L dp(N2) . _

n(Na) iw(N,) = 0. (6.4)

The last two conditions are outgoing waves conditions imposed on the boundary of the
structure. They are obtained by the continuity of the field across the boundary and the fact
that the outgoing wave takes the form ¢ = c¢_e™“* and ¢ = ce'“* for x < Ny and x > N,
respectively.

Lemma 6.1. Let w € C\{0} be a resonance of (6.2)—(6.4), then w attains negative imaginary
part.

Proof. Multiply the differential equation in (6.2) by £v and integrate by part, it follows that:
2

N dy B 1 d1/)(N]) - 1 di/f(Nz) n _
/Nl m a —WZ€N|¢| dx_|_m . ’(/)(Nl)—ﬁTw(NZ)—O.

An application of the boundary conditions yields:
2

N2
/ L0 e P — o (N0 — o o (V) = 0. (6.5)

N,de

Let w = w; 4 iw,, where w; and w, are real numbers. First let us consider the case when
the real part w; # 0. Note that the imaginary part of the left hand side of (6.5) is:

o (200 [0 Pt WP + o) ).

di(N di)(N.
If wy >0, then ¥(N;) = 1(N,) = 0. This implies that 7{& 1) _ ¢(§ 2)

X X
sequently ¢ = 0 in (N, N,). Hence, we deduce that w, < 0. Now if the real part w; = 0, the
left hand side of (6.5) is:

[
Ny MN

If w, > 0, then a similar argument shows that ¢ = 0 in (N7, N,). The proof is complete. [

=0, and con-

2

DO | 2 P+ wn [N +wn [ (V)2 = .

dx

We denote the differential operator for the infinite structure (namely when |[N;| = N, = 00)
by:

Eld)(x)a )C<0,

Lootp () = {£21/J (x), x>0,

where L£; (j = 1,2) is the differential operator with the physical parameters €; and y;. Assume
that the structure attains an interface mode v, with the energy E,. From the discussions in
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sections 4 and 5, E is located in a common spectral band gap of two operators. We would
like to investigate resonances for the finite structure that are near the eigenvalue wo, = VEo.
In the sequel, we set E = w? and let M\/)(E) be the transfer matrix associated with the

equation (£; — E)y =0. /\‘(EJ)1 and /\‘(EJ)2 are the eigenvalues of M) (E) defined by (2.11), with
the corresponding eigenvectors Vfgj )1 and ng )2 givenin (3.1). Note that £ is located in the com-
mon spectral band gap of £; and £,, there holds |/\1(9] )1 <1< |)\(E’ )2| for E in the neighborhood
of E... Without loss of generality, it is assumed that wéj %(1) = 0 so that the two eigenvectors
VfEJ )1 and VfE] )2 defined above are linearly independent. We have the following lemma for the

eigenvectors Vé’ )1 and Vfgj )2

Lemma 6.2. Let Ey = w} for wy € RY, and %(E?,] (1) and wg)z(l) are analytic at wy over the
complex plane. If |)\1(5{) )1| <l< |)\é{) )’2|, then Vg) )’1 and V(E{] )’2 are analytic at wy over the complex
) Vi
A0 dw

. ()
) > 0 and det (Vi) 22 <,

plane. Furthermore, there holds det (Vé{) 2 T

The proof follow the same lines as theorem 4.4 in [29], and we omit here for conciseness.

Theorem 6.3. Let N = min{|N,|,N,}. There exists an integer Ny such that for any N > Ny,

there is complex-valued resonance w of (6.2)—(6.4) in the neighborhood of w«.. Furthermore,
there holds:

| W — Weo| < Ce™ WV,

in which C is a positive constant independent of N and a(w) > 0 is a function defined in the
neighborhood of w.

Proof. Let ®(x) = (¢(x), ﬁd/ (x))T the solution vector, where v is the solution of (6.2)—

(6.4) with the complex-valued frequency w. Note that |)\1(EJ )] <1< |/\1(9] )2| for w in the neigh-
borhood of we, in which E = w?, one can expand ®(N,) as:

DN = 1)V} + () V),
where the coefficients ¢ (w) and ¢, (w) are:
det(2(M:). Vi) (o) = 2 VE 2(N)
aw) =——mp 7 oWw) =——m—m7_—"
det(Vy1, Vi) det(Vy1, Vi)
_ _ M\ M (1)
The field at x = 0 can be expressed as ©(0) = c1(w) ( A} g1t e(w) (Ags
By decomposing Vg% and V(El% as:

WE‘}:cll(w)‘ﬁﬂclz(w)V?,%, Vg,%zczl(W) E2,1+622(w) Ezgv
where
1 2 2 1
Ol ) B 7 ) 67
Cn\w) = y nlw)= ’ '
2 2 2 2
et (VP VED) et (VP VED)
1 2 2 1
Ol ) B 7 ) 68
(W) = , W)= ) :
2 2 2 2
ae (V) ae (V7))
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it follows that:
2(0) = (ariente) ()" + exwlent) (A1) ) V)
+ (atlen) (M) ™'+ ex@iente) (1)) v

We deduce that the filed at x = N, is:

2(0) = (er(@en) (A1) "+ aiente) (2) ) () )
+ (@) ()" +ertien) () ™) ()" vl

= (anvton)

This leads to the equation:

1 2\ M 2
cr(w)en (w) (%) (Aéi) +e(w)ea(w) (A%zé
A AED AE2

A

[V
(M e ) =B (0) + | @1 @)en(w) <(> +er(w)en(w)

[N

[N

(A=l - e () =0, (6.9)

which is the equation of resonance.
Let ¢(w) = det (V(El%,Vg%) - det (VQ,V(EZ%), and define the following complex-valued

) )

functions:

Fw) = c@e@enw): (M- v 1) —wpf1),
Gi(w) = c@)er(@)en @) - (A7 = (1) —wy (1))
Go(w) = c@)eaw)en W) - (A = (1) = iwvf3(1))
Ga(w) = c(w)er@)en(w) - (AL — v (1) — iwe) (1)

The nonlinear equation (6.9) can be written as:

il @)\ 2 @\ " (1)

/\(1) )\() A A
s (35) (35) o0 (53) wow (G
>‘E,2 >‘E,2 /\E,z >‘E,2

Since the infinite structure attains an interface mode 1, with the energy E., = w>_, we
have F(wso) = c22(w) =0.

It can be shown that F(w) and G(w) are analytic in the neighborhood of the frequency weo
over the complex plane. By Taylor’s theorem [2], there exists an analytic function F (w) such
that:

[N
) + F(w)=0. (6.10)

F(w) = F(w)(w —wess), where Flws)=F(woo). (6.11)
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Table 1. Resonances for finite structures with different number of period.

N 2 4 8 16
Re(w — woo ) —0.0077 —0.0035 —0.0008 430%x 1073
Im(w — Woo ) —0.2117 —0.0625 —0.0090 —2.80x107*
|w — weo| 02118 0.0626 0.0090 2.84% 107

Substituting into (6.10) yields:

[Ny | Ny N
B /\(1) )\(2) /\(2)
F(w)(w—wso) = —Gi(w) ( = =) —Gw) |
A A A
)\(1) [N1]
—G3(w) ( f{i) . (6.12)
AE2

Now a direct calculation leads to:

F(woe)=det (Vi) | o) - L (det (V2 VD)) (A2, o () -ww® (1))

Noting that Vgo)cl = SV(EZQ for some nonzero constant s, we obtain:
2) V(l)
d ) A vl @ WVion
% (det (V(Eocyl’VEooyz)) = det dw 7Véo)o72 +det VEoiv“T

1 dvézoll 2) 1) dvgo)oz
_Sdet<dw,V(E°°’] + sdet VI(EOO,Z’T .

From lemma 6.2 we deduce that there exists a constant >0 such that ‘I:" (w){ > 7y in the
neighborhood of w.
Consequently, we obtain,

Ao\ @
‘w _woo| 5 max Eil ) % ,S efa(w)N7 N= min{|N1‘7N2}a
A A

A

>

AL

where the last inequality above follows from the fact that

of Eo.

< 1 for E in the neighborhood

L
A2
it can be shown that T is a contraction map in the neighborhood of w... Hence the existence
of the resonance follows. O

If one rewrites the condition (6.12) as w = T(w), then using the inequality < 1 again,

We illustrate the exponential decay of the distance |w — w | by considering the layered period
structure in section 5.5. Table 1 shows the value w — wy, and |w — weo| when |Ni| =N, =
2,4,8,16. The distance |w — woo| decays exponentially with respect to the number of period N
as illustrated in figure 4. Now considering the scattering problem (6.1) with the incident wave
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Figure 4. The distance |w — woo | for N =2,4,8,16.
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Figure 5. Transmission value || near the resonant frequency for |N;| = N, = 2,4,8, 16.
The infinite structure attains an interface mode at the frequency we, = 15.6765.

winc —

¢'“*, The transmission |¢| exhibits peaks at resonant frequencies. As shown in figure 5,

when N increases, the resonant peaks become sharper as the imaginary part of the resonance

decreases.
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Appendix

Proof of lemma 4.1

The partial derivatives of the solution matrix Wg 5(x) with respect to the two parameters E and
0 have the following expressions (see for instance chapter one in [9]),

D) — s e) [0 KW Wis (0 A1)
O S A :
wg—ﬁ(” = Vp,s(x) / ) Uy s (OJF(0) Y s(r)dr, (A2)
0
and
>’ ro O 5(1
%(X) =2U,5(x) /0 \I]E,:S(t)‘]w(t)gig()dtv (A3)
9’ 5(x) e O s(h)
T 2wt [ whaR e (A4
82@1;’5()6) . * 1 8‘1’&5([) ~ 8\115’5(1‘)
“oEos  Les) /0 Wi s(1)J (W(t) 55 HFO—35 )dt. (A.5)
We write

B

E
0s(x) = W o ()T (x) W o(x),
Using the fact that det Ug- o(x) = 1, we have:
1 ﬁwtls*,z,o(x) — g+ 2,0(%)
V. ,o(x) = 1 .
— Ve 100 Ve 10(x)
It follows from a direct calculation that:

0, = ~-VIwu  —VI'wv 0, — ~VIFU —V'FV
Y\u'wu u'wv )0 22T\ UTFU  UTFV )

{ 01 (x) = Uz (X)IW(x) V- o(x),

(A.6)

Now, let x=1 in (A.1). By noting that Ug- o(1) = Id, we have:

oM :
S (B0 = / WL (IW() e (1)
0
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Taking the trace and using the fact that TrAB = TrBA, and that TrJW(t) = 0, we obtain:

oD

1
8E(E O):/O TrJw(t)dt = 0.

%?(E*,O) = 0 follows similarly by using (A.2).
We next show that:

82

8E2 [ / Oi(x ] ; (A7)
620

52 (E l / Q> (x ] ; (A.8)
82D

905 £ V Qi (x H/ O (x ] (A.9)

In light of (A.3), we have:

o*M

g (E0)=2 /0 \I!E’%)(x)JW(x)ia\I}E’O(x)

3E dx

1 X
:2/0 \I/g*l,o(x)JW(x)\IlE*7o(x)/() \I/E*{O(t)JW(t)\IIE*7O(t)dtdx

- 2/01/()XQ1(x)Q1(t)dtdx.

2 1 X
%(E*,O):z /0 /0 Tr Oy (x) 01 (1) didx

:/01/OxTrQ](x)Ql(t)dtdx+/ol/OtTrQl(t)Q](x)dxdt
_ /0 1 /0 1101 (6)0) (0drdx + /O 1 / 110, (2)0) (1drd
:/Ol/olTrQl(x)Ql(t)dtdx

= Tr/ol /0] Q1 (x) Q) (1)dtdx = Tr(/ol Q1 (x)dx)?,

which proves (A.7). The equality (A.8) and (A.9) can be proved in a similar manner. Finally,
the desired results follow from (A.6) and a direct calculation. O

Taking the trace, we get:

Proof of proposition 4.4

Since iz > 0,€ > 0, it follows that:

1 i
/ VI (x)F(x)V(x)dx > 0, / UT(x)F(x)U(x)dx > 0,
0 0
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and we can derive the following Cauchy-Schwarz type inequality:

1 2 1 1
/ UT(x)F(x)V(x)dx| < / VT(x)F(x)V(x)dx~/ UT(x)F(x)U(x)dx]| .
0 0 0
Let
1 1/2 . 1/2
U}, = ( / UTWde> . V= ( / VTWde> ,
0 0
1 172 1 1/2
\U|, = ( / UTFde> . V= ( / VTFde> ,
0 0
and define,
1 1
" Jy UTWvdx _ Jo U'wvdx
(Jo VIWVAX)1/2 - ([ UTWUdx)/2 - V- [UL
1 ~ 1 ~
. Jiy UTFVdx [y UTFvdx

- (fol VIFV)1/2. (fol UTFUdx)!/? V- |UR
Then it is clear that |¢;| < 1, |£2] < 1. We obtain,

—ar=——(E*.0)=t:1-|Ul - V|7 - |U 'V—*U2~V2——U2-V2
5% = 35505 E O =0t Ul VI [Uk - [Vl = 5[UL- VT = 51U [VI2
U~ IVl |U|1'|V|z>
21U -Vl 2[U- VI )

= U]\ [V - | UL V]2 (m—

On the other hand:
1 10°D,
S 25@(15 ,0)= (67— 1)- U - VI3,
1 10°D 2 2 2
§a3:§W(E ,0)=(; —1)-|U3-|V]3.

Using the inequality:

(1-nn)*>(1—1f)(1-1),

and
Ul, - V] Ul - V]
if11p — UVl ULV 1> 1— i,
2[U} V]2 2|U]2- |V
we can conclude that a3 — aja; > 0. O

Proof of lemma 4.8

For ease of presentation, we set it = 0. Then,

o i (. i
/ U'FUdx = / w;mo (x) E€(x)dx; / UTFVdx = / e 1(x)E= 2,0(x)EE(x)dXx.
0 0

0 0

Under the assumption that p and ¢ are even functions, we can show that ¥g- 1 o(x) is
even and ¢g- 5 (x) is odd. In addition, since W« o(1) = Id, we have U o(x+ 1) = Up o(x).
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Therefore both functions g 1 o(x) and 1g- 7 o(x) are periodic with period one. Hence we can
derive that:

(. 1/2
/ U'FUdx = ¢§*7170(x)E§(x)dx =0,

0 —1/2
and that
o 172 1/2
/ U'FVdx = Y= 1,0(X) e 2,0(x)EE(x)dx = 2E YEr 1,0(X) e+ 2,0(x)E(x)dx.
0 —1/2 0

It is clear that we can choose £(x) to make fol UTFVdx # 0. This completes the proof of the
lemma. [J
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