
Digital Object Identifier (DOI) 10.1007/s00205-012-0605-5
Arch. Rational Mech. Anal. 208 (2013) 667–692

Spectral Theory of a Neumann–Poincaré-Type
Operator and Analysis of Cloaking Due

to Anomalous Localized Resonance

Habib Ammari, Giulio Ciraolo, Hyeonbae Kang,
Hyundae Lee & Graeme W. Milton

Communicated by W. E

Abstract

The aim of this paper is to give a mathematical justification of cloaking due to
anomalous localized resonance (CALR). We consider the dielectric problem with a
source term in a structure with a layer of plasmonic material. Using layer potentials
and symmetrization techniques, we give a necessary and sufficient condition on
the fixed source term for electromagnetic power dissipation to blow up as the loss
parameter of the plasmonic material goes to zero. This condition is written in terms
of the Newtonian potential of the source term. In the case of concentric disks, we
make the condition even more explicit. Using the condition, we are able to show that
for any source supported outside a critical radius, CALR does not take place, and
for sources located inside the critical radius satisfying certain conditions, CALR
does take place as the loss parameter goes to zero.

1. Introduction

In recent years much interest has been aroused by the possibility of cloaking
objects from interrogation by electromagnetic waves. Many schemes are under
active current investigation [1,3,7,8,11–13,18–22,24,26,35]. One such scheme,
which is the focus of our study, relies on resonant interaction to mask the electro-
magnetic signature of the object to be cloaked [5,6,25,27–29,31,32,34].

We consider the dielectric problem with a source term α f , proportional to f ,
which models the quasi-static (zero-frequency) transverse magnetic regime. The
cloaking of the source is achieved in a region external to a plasmonic structure. The
plasmonic structure consists of a shell having relative permittivity −1 + iδ, with δ

modelling losses.
The cloaking issue is directly linked to the existence of anomalous localized

resonance (ALR), which is tied to the fact that an elliptic system of equations can
exhibit localization effects near the boundary of ellipticity. The plasmonic struc-
ture exhibits ALR if, as the loss parameter δ goes to zero, the magnitude of the
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quasi-static in-plane electric field diverges throughout a specific region (with sharp
boundary not defined by any discontinuities in the relative permittivity), called the
anomalous resonance region, but converges to a smooth field outside that region.
The convergence to a smooth field outside the region was shown in [33], where the
first numerical evidence for ALR was also presented. A proof of ALR for a dipolar
source outside a plasmonic annulus was given in [30].

Alexei Efros (2005 private communication to GWM) made the key obser-
vation that for a fixed dipolar source within a critical distance of the plasmonic
structure, the total electrical power absorbed would become infinite as δ → 0,
which is unphysical. The anomalously resonant fields interact with the source cre-
ating a sort of “electromagnetic molasses” against which the source has to do a
huge amount of work to maintain its amplitude; in fact, an infinite amount of work
in the limit δ → 0. Therefore, it makes sense to normalize the source term (by
adjusting α, letting it depend on δ) so the source supplies power at a constant rate
independent of δ. Then outside the region where ALR occurs the field tends to zero
as δ → 0: the source becomes cloaked. Cloaking also extends to finite collections
of polarizable dipoles (dipole sources whose strength is proportional the field act-
ing on them) within a critical radius around a plasmonic annulus [27,34], and to a
sufficiently small dielectric disk (with radius which goes to zero as δ → 0) lying
within this critical radius [5]. However, numerical evidence suggests that a small
dielectric disk with δ independent radius is only partially cloaked in the limit δ → 0
[6]. We also mention that opposing sources on opposite sides of a planar superlens
can be cloaked [4], but this is due to cancellation of fields, rather than anomalous
resonance.

To mathematically state the problem, let Ω be a bounded domain in R
2 and let

D be a domain whose closure is contained in Ω . Throughout this paper, we assume
that Ω and D are of class C1,μ for some 0 < μ < 1. For a given loss parameter
δ > 0, the permittivity distribution in R

2 is given by

εδ =

⎧
⎪⎨

⎪⎩

1 in R
2 \ Ω,

−1 + iδ in Ω \ D,

1 in D.

(1)

We may consider the configuration as a core with permittivity 1 coated by the shell
Ω \ D with permittivity −1 + iδ. For a given function f compactly supported in
R

2 satisfying

∫

R2
f dx = 0 (2)

(which physically is required by conservation of charge), we consider the following
dielectric problem:

∇ · εδ∇Vδ = α f in R
2, (3)

with the decay condition Vδ(x) → 0 as |x | → ∞.
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A fundamental problem is to identify those sources f such that when α = 1,
then, first,

Eδ :=
∫

Ω\D
δ|∇Vδ|2dx → ∞ as δ → 0, (4)

and, second, Vδ remains bounded outside some radius a:

|Vδ(x)| < C, when |x | > a (5)

for some constants C and a independent of δ (which necessitates that the ball Ba

contains the entire region of anomalous localized resonance). The quantity Eδ is
proportional to the electromagnetic power dissipated into heat by the time harmonic
electrical field averaged over time. Hence (4) implies an infinite amount of energy
dissipated per unit time in the limit δ → 0, which is unphysical. If instead we
choose α = 1/

√
Eδ , then the source α f will produce the same power independent

of δ, and the new associated solution Vδ (which is the previous solution Vδ mul-
tiplied by α) will approach zero outside the radius a: cloaking due to anomalous
localized resonance (CALR) occurs. The conditions (4) and (5) are sufficient to
ensure CALR; a necessary and sufficient condition is that (with α = 1) Vδ/

√
Eδ

goes to zero outside some radius as δ → 0. We also consider a weaker blow-up of
the energy dissipation, namely,

lim sup
δ→0

Eδ = ∞. (6)

We say that weak CALR takes place if (6) holds (in addition to (5)). Then the
(renormalized) source f/

√
Eδ will be essentially invisible at an infinite sequence

of small values of δ tending to zero (but would be quite visible for values of δ

interspersed between this sequence if CALR does not additionally hold).
The aim of this paper is to develop a general method based on potential theory for

studying cloaking due to anomalous resonance. Using layer potential techniques,
we reduce the problem to a singularly perturbed system of integral equations. The
system is non-self-adjoint. A symmetrization technique is introduced in order to
express the solution in terms of the eigenfunctions of a self-adjoint compact oper-
ator. The symmetrization technique is based on a generalization of a Calderón
identity to the system of integral equations under consideration and a general the-
orem on symmetrization of non-selfadjoint operators obtained in a recent paper by
Khavinson et al. [17].

Using the technique developed in this paper, we are able to provide a necessary
and sufficient condition on the source term under which the blowup (4) of the power
dissipation takes place. The condition is given in terms of the Newtonian potential
of the source, which is the solution for the potential in the absence of the plasmonic
structure.

In the case of an annulus (D is the disk of radius ri and Ω is the concentric
disk of radius re), it is known [27] that there exists a critical radius (the cloaking
radius),

r∗ =
√

r3
e ri

−1, (7)
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such that any finite collection of dipole sources located at fixed positions within
the annulus Br∗ \ Be is cloaked. We show (see Theorem 5.3 below) that if f is an
integrable function supported in E ⊂ Br∗ \ Be satisfying (2) and the Newtonian
potential of f does not extend as a harmonic function in Br∗ , then weak CALR
takes place. Moreover, we show that if the Fourier coefficients of the Newtonian
potential of f satisfy a mild gap condition, then CALR takes place. Using this
result, we are able to show that a quadrupole source inside the annulus Br∗ \ Be

would be cloaked, in agreement with the numerical results of [34]. Conversely,
we show that if the source function f is supported outside Br∗ , then (4) does not
happen and no cloaking occurs. We stress that we assume f does not depend on δ;
the results of [6] strongly suggest that there exist sequences of sources fδ supported
in E ⊂ Br∗ \ Be with non-trivial Newtonian potentials outside E , such that the
power dissipation does not blow up, and such that Vδ does not go to zero outside
Br∗ as δ → 0.

This paper is organized as follows. In Section 2 we transform the problem into
a system of integral equations using layer potentials. In Section 3, we develop a
spectral theory for the relevant integral operators and derive a necessary and suf-
ficient condition for CALR to take place. Section 4 treats the special case of an
annulus.

2. Layer Potential Formulation

Let G be the fundamental solution to the Laplacian in two dimensions which
is given by

G(x) = 1

2π
ln |x |.

Let Γi := ∂ D and Γe := ∂Ω . For Γ = Γi or Γe, we denote, respectively, the single
and double layer potentials of a function ϕ ∈ L2(Γ ) as SΓ [ϕ] and DΓ [ϕ], where

SΓ [ϕ](x) :=
∫

Γ

G(x − y)ϕ(y) dσ(y), x ∈ R
2,

DΓ [ϕ](x) :=
∫

Γ

∂

∂ν(y)
G(x − y)ϕ(y) dσ(y) , x ∈ R

2 \ Γ.

Here, ν(y) is the outward unit normal to Γ at y.
We also define a boundary integral operator KΓ on L2(Γ ) by

KΓ [ϕ](x) := 1

2π

∫

Γ

〈y − x, ν(y)〉
|x − y|2 ϕ(y) dσ(y),

and let K∗
Γ be the L2-adjoint of KΓ . Hence, the operator K∗

Γ is given by

K∗
Γ [ϕ](x) = 1

2π

∫

Γ

〈x − y, ν(x)〉
|x − y|2 ϕ(y) dσ(y), ϕ ∈ L2(Γ ).
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Here and throughout this paper, 〈 , 〉 denotes the scalar product in R
2. The operators

KΓ and K∗
Γ are sometimes called Neumann–Poincaré operators. These operators

are compact in L2(Γ ) if Γ is C1,α for some α > 0.
The following notation will be used throughout this paper. For a function u

defined on R
2 \ Γ , we denote

u|±(x) := lim
t→0+ u(x ± tν(x)), x ∈ Γ,

and

∂u

∂ν

∣
∣
∣±(x) := lim

t→0+〈∇u(x ± tν(x)), ν(x)〉 , x ∈ Γ,

if the limits exist.
The following jump formulas relate the traces of the double layer potential and

the normal derivative of the single layer potential to the operators KΓ and K∗
Γ . We

have

(DΓ [ϕ])|±(x) = (∓ 1
2 I + KΓ

) [ϕ](x), x ∈ Γ, (8)

∂

∂ν
SΓ [ϕ]
∣
∣
∣±(x) = (± 1

2 I + K∗
Γ

) [ϕ](x), x ∈ Γ. (9)

See, for example, [2,9].
Let F be the Newtonian potential of f , that is,

F(x) =
∫

R2
G(x − y) f (y)dy, x ∈ R

2. (10)

Then F satisfies ΔF = f in R
2, and the solution Vδ to (3) may be represented as

Vδ(x) = F(x) + SΓi [ϕi ](x) + SΓe [ϕe](x) (11)

for some functions ϕi ∈ L2
0(Γi ) and ϕe ∈ L2

0(Γe)(L2
0 is the collection of all square

integrable functions with the integral zero). The transmission conditions along the
interfaces Γe and Γi satisfied by Vδ read

(−1 + iδ)
∂Vδ

∂ν

∣
∣
∣+ = ∂Vδ

∂ν

∣
∣
∣− on Γi

∂Vδ

∂ν

∣
∣
∣+ = (−1 + iδ)

∂Vδ

∂ν

∣
∣
∣− on Γe.

Hence the pair of potentials (ϕi , ϕe) is the solution to the following system of
integral equations:
⎧
⎪⎪⎨

⎪⎪⎩

(−1 + iδ)
∂SΓi [ϕi ]

∂νi

∣
∣
∣+ − ∂SΓi [ϕi ]

∂νi

∣
∣
∣− + (−2 + iδ)

∂SΓe [ϕe]
∂νi

= (2 − iδ)
∂ F

∂νi
on Γi ,

(2 − iδ)
∂SΓi [ϕi ]

∂νe
+ ∂SΓe [ϕe]

∂νe

∣
∣
∣+ − (−1 + iδ)

∂SΓe [ϕe]
∂νe

∣
∣
∣− = (−2 + iδ)

∂ F

∂νe
on Γe.
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Note that we have used the notation νi and νe to indicate the outward normal on Γi

and Γe, respectively. Using the jump formula (9) for the normal derivative of the
single layer potentials, the above equations can be rewritten as

⎡

⎢
⎢
⎣

−zδ I + K∗
Γi

∂

∂νi
SΓe

∂

∂νe
SΓi zδ I + K∗

Γe

⎤

⎥
⎥
⎦

[
ϕi

ϕe

]

= −

⎡

⎢
⎢
⎣

∂ F

∂νi
∂ F

∂νe

⎤

⎥
⎥
⎦ (12)

on L2
0(Γi ) × L2

0(Γe), where we set

zδ = iδ

2(2 − iδ)
. (13)

Note that the operator in (12) can be viewed as a compact perturbation of the
operator

Rδ :=
[−zδ I + K∗

Γi
0

0 zδ I + K∗
Γe

]

. (14)

We now recall Kellogg’s result in [16] on the spectrums of K∗
Γi

and K∗
Γe

. The

eigenvalues of K∗
Γi

and K∗
Γe

lie in the interval [− 1
2 , 1

2 ]. Observe that zδ → 0 as
δ → 0 and that there are sequences of eigenvalues of K∗

Γi
and K∗

Γe
approaching

0 since K∗
Γi

and K∗
Γe

are compact. So 0 is the essential singularity of the operator
valued meromorphic function

λ ∈ C �→ (λI + K∗
Γe

)−1.

This causes a serious difficulty in dealing with (12). We emphasize that K∗
Γe

is not
self-adjoint in general. In fact, K∗

Γe
is self-adjoint only when Γe is a circle or a

sphere (see [23]).
Let H = L2(Γi ) × L2(Γe). We write (12) in a slightly different form. We first

apply the operator
[−I 0

0 I

]

: H → H

to (12), then the equation becomes
⎡

⎢
⎢
⎣

zδ I − K∗
Γi

− ∂

∂νi
SΓe

∂

∂νe
SΓi zδ I + K∗

Γe

⎤

⎥
⎥
⎦

[
ϕi

ϕe

]

=

⎡

⎢
⎢
⎣

∂ F

∂νi

− ∂ F

∂νe

⎤

⎥
⎥
⎦ . (15)

Let the Neumann–Poincaré-type operator K
∗ : H → H be defined by

K
∗ :=

⎡

⎢
⎢
⎣

−K∗
Γi

− ∂

∂νi
SΓe

∂

∂νe
SΓi K∗

Γe

⎤

⎥
⎥
⎦ , (16)
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and let

Φ :=
[
ϕi

ϕe

]

, g :=

⎡

⎢
⎢
⎣

∂ F

∂νi

− ∂ F

∂νe

⎤

⎥
⎥
⎦ . (17)

Then, (15) can be rewritten in the form

(zδI + K
∗)Φ = g, (18)

where I is given by

I =
[

I 0
0 I

]

. (19)

3. Properties of K
∗

In the following we provide some properties of K
∗. In particular, we com-

pute the adjoint operator K of K
∗, study the spectrum of K

∗, and show that K
∗ is

symmetrizable on the space H = L2(Γi ) × L2(Γe).

3.1. Adjoint Operator of K
∗

We first compute the adjoint of K
∗. Denote by 〈, 〉L2(Γ ) the Hermitian product

on L2(Γ ) for Γ = Γi or Γe. It is easy to see that

〈 ∂

∂νi
SΓe [ϕe], Ψi

〉

L2(Γi )
= 〈ϕe,DΓi [Ψi ]〉L2(Γe)

, (20)

and

〈 ∂

∂νe
SΓi [ϕi ], Ψe

〉

L2(Γe)
= 〈ϕi ,DΓe [Ψe]〉L2(Γi )

. (21)

Thus the L2-adjoint of K
∗, K, is given by

K =
[
−KΓi DΓe

−DΓi KΓe

]

. (22)

We emphasize that the operators DΓe and DΓi in the off-diagonal entries are those
from L2(Γe) into L2(Γi ), and from L2(Γi ) into L2(Γe), respectively.



674 Habib Ammari et al.

3.2. Spectrum of K
∗

We now look into the spectrum of K
∗. We have the following proposition which

is a generalization of Kellogg’s result in [16] on the spectrum of the operator K∗
Γ

on L2(Γ ).

Lemma 3.1 The spectrum of K
∗ lies in the interval [−1/2, 1/2].

Proof. Let λ be a point in the spectrum of K
∗. Then there exists Φ = (ϕi , ϕe) with

ϕi ∈ L2(Γi ) and ϕe ∈ L2(Γe) such that
⎧
⎪⎪⎨

⎪⎪⎩

K∗
Γi

[ϕi ] + ∂

∂νi
SΓe [ϕe] = −λϕi on Γi ,

∂

∂νe
SΓi [ϕi ] + K∗

Γe
[ϕe] = λϕe on Γe.

By integrating the above equations on Γi and Γe, respectively, and using (20) and
(21), we obtain

⎧
⎪⎪⎨

⎪⎪⎩

(
λ + 1

2

)
∫

Γi

ϕi dσ = 0,

(
λ − 1

2

)
∫

Γe

ϕedσ = −
∫

Γi

ϕi dσ.

Here, we used the facts that KΓi [1] = 1/2,KΓe [1] = 1/2,DΓe [1] = 1 on Γi , and
DΓi [1] = 0 on Γe. Thus, either λ = ±1/2 or λ = ±1/2 with ϕi ∈ L2

0(Γi ) and
ϕe ∈ L2

0(Γe) holds. We assume that λ = ±1/2 and consider

u(x) := SΓi [ϕi ](x) + SΓe [ϕe](x), x ∈ R
2.

Since ϕi ∈ L2
0(Γi ) and ϕe ∈ L2

0(Γe), we have u(x) = O(|x |−1) as |x | → ∞, and
hence the following integrals are finite:

A =
∫

D
|∇u|2dx, B =

∫

Ω\D
|∇u|2dx, C =

∫

R2\Ω
|∇u|2dx .

Since λ is an eigenvalue of K
∗, we obtain from Green’s formulas and the jump

relation (9) that

A = −
(
λ + 1

2

) ∫

Γi

ūϕi dσ,

B =
(
λ − 1

2

) ∫

Γi

ūϕi dσ +
(
λ − 1

2

) ∫

Γe

ūϕedσ,

and

C = −
(
λ + 1

2

) ∫

Γe

ūϕedσ.
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Thus, we get

λ − 1
2

λ + 1
2

(A + C) = −B,

which implies

λ = 1

2
− B

A + B + C
.

Since A, B, C � 0 and A + B + C > 0, we conclude that −1/2 < λ < 1/2. This
completes the proof. ��

3.3. Calderón’s Identity

We prove that there exists a positive self-adjoint operator −S such that SK
∗ =

KS on H = L2(Γi ) × L2(Γe). This is a Calderón-type identity. It will be used to
prove that K

∗ is symmetrizable.
In fact, S is given by

S =
[SΓi SΓe

SΓi SΓe

]

. (23)

Again we emphasize that the operator SΓe off the diagonal is the one from L2(Γe)

into L2(Γi ), and likewise for SΓi off the diagonal.

Lemma 3.2 The operator −S is self-adjoint and −S � 0 on H.

Proof. It is clear that

[SΓi 0
0 SΓe

]

is self-adjoint. On the other hand, from the rela-

tions

〈SΓi [ϕi ], ϕe〉L2(Γe)
= 〈ϕi ,SΓe [ϕe]〉L2(Γi )

and

〈SΓe [ϕe], ϕi 〉L2(Γi )
= 〈ϕe,SΓi [ϕi ]〉L2(Γe)

,

it follows that

[
0 SΓe

SΓi 0

]

is self-adjoint and hence S is self-adjoint.

Let Φ = (ϕi , ϕe) ∈ H and define

u(x) = SΓi [ϕi ](x) + SΓe [ϕe](x). (24)

Then we have
∫

D
|∇u|2dx =

∫

∂ D
ū

(

− 1

2
ϕi + K∗

Γi
[ϕi ] + ∂

∂νi
S�e [ϕe]

)

dσ,

∫

Ω\D
|∇u|2dx = −

∫

∂ D
ū

(
1

2
ϕi + K∗

Γi
[ϕi ] + ∂

∂νi
S�e [ϕe]

)

dσ

+
∫

∂Ω

ū

(

− 1

2
ϕe + K∗

Γe
[ϕe] + ∂

∂νe
S�i [ϕi ]

)

dσ,
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and
∫

R2\Ω
|∇u|2dx = −

∫

∂Ω

ū

(
1

2
ϕe + K∗

Γe
[ϕe] + ∂

∂νe
S�i [ϕi ]

)

dσ.

Summing up the above three identities we find
∫

R2
|∇u|2dx = −

∫

∂ D
ūϕi dσ −

∫

∂Ω

ūϕedσ

= 〈Φ,−S[Φ]〉H.

Thus −S � 0. This completes the proof. ��
To prove that K

∗ is symmetrizable, we shall make use of the following lemma,
which can be proved by Green’s formulas.

Lemma 3.3 Let E ⊂ R
2 be a bounded domain.

(i) If u is a solution of Δu = 0 in E, then

S∂ E

[∂u

∂ν

∣
∣
∣−

]
(x) = D∂ E

[
u
∣
∣−
]
(x), x ∈ R

2 \ E . (25)

(ii) If u is a solution of
{

Δu = 0 in R
2 \ E,

u(x) → 0, |x | → ∞,
(26)

then

S∂ E

[∂u

∂ν

∣
∣+
]
(x) = D∂ E

[
u
∣
∣+
]
(x), x ∈ E .

Note that the well-known Calderón’s identity (also known as Plemelj’s sym-
metrization principle)

S∂ EK∗
∂ E = K∂ ES∂ E (27)

is an immediate consequence of Lemma 3.3. In fact, if we put u = S∂ E [ϕ] in (25),
we have

−1

2
S∂ E [ϕ](x) + S∂ EK∗

∂ E [ϕ](x) = D∂ ES∂ E [ϕ](x), x ∈ R
2 \ E .

By taking the limit as x → ∂ E from outside E , we obtain (27) using the jump
relation (8) of the double layer potential.

The following lemma is a generalization of Calderón’s identity.

Lemma 3.4 Let S and K be given by (23) and (16), respectively. Then

SK
∗ = KS, (28)

that is, SK
∗ is self-adjoint.
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Proof. Notice that

SK
∗ =

⎡

⎢
⎢
⎢
⎣

−SΓi K∗
Γi

+ SΓe

∂

∂νe
S�i −SΓi

∂

∂νi
S�e + SΓeK∗

Γe

−SΓi K∗
Γi

+ SΓe

∂

∂νe
S�i −SΓi

∂

∂νi
S�e + SΓeK∗

Γe

⎤

⎥
⎥
⎥
⎦

and

KS =
⎡

⎣
−KΓi SΓi + DΓeSΓi −KΓi SΓe + DΓeSΓe

−DΓi SΓi + KΓeSΓi −DΓi SΓe + KΓeSΓe

⎤

⎦ .

We now check the following.

– (SK
∗)11 = (KS)11: by (27) it follows that SΓi K∗

Γi
= KΓi SΓi on Γi . If we set

u(x) = SΓi [ϕi ](x) and E = Ω in Lemma 3.3 (ii), we have

SΓe

∂

∂νe
S�i [ϕi ] = DΓeSΓi [ϕi ] on Γi .

This implies (SK
∗)11 = (KS)11.

– (SK
∗)12 = (KS)12: from Lemma 3.3 (ii), by setting u(x) = SΓe [ϕe](x) and

E = D, we find

SΓi

∂

∂νi
S�e [ϕe](x) = DΓi SΓe [ϕe](x), x ∈ R

2 \ D.

By taking the limit as x → Γi |+, we find

SΓi

∂

∂νi
S�e [ϕe] = −1

2
SΓe [ϕe] + KΓi SΓe [ϕe] on Γi . (29)

Now, we use Lemma 3.3 (ii) by taking u = SΓe [ϕe] and E = Ω and find

SΓe

[∂SΓe [ϕe]
∂νe

∣
∣+
]
(x) = DΓeSΓe [ϕe](x) for x ∈ Ω,

and thus we have

1

2
SΓe [ϕe] + SΓeK∗

Γe
[ϕe] = DΓeSΓe [ϕe] on Γi . (30)

Summing up (29) and (30), we find that (SK
∗)12 = (KS)12.

– (SK
∗)21 = (KS)21: we use Lemma 3.3 (i) by setting u = SΓi [ϕi ] and E = D

and find

SΓi

[∂SΓi [ϕi ]
∂νi

∣
∣−
]
(x) = DΓi SΓi [ϕi ](x) for x ∈ R

2 \ D,

and thus we have

− 1

2
SΓi [ϕi ] + SΓi K∗

Γi
[ϕi ] = DΓi SΓi [ϕi ] on Γe. (31)
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By setting u = SΓi [ϕi ] and E = Ω in Lemma 3.3 (ii), we find

SΓe

∂

∂νe
S�i [ϕi ](x) = DΓeSΓi [ϕi ](x), x ∈ Ω,

and by taking the limit as x → Γe|−, we find

SΓe

∂

∂νe
S�i [ϕi ] = 1

2
SΓi [ϕi ] + KΓeSΓi [ϕi ], on Γe. (32)

Summing up (31) and (32), we find that (SK
∗)21 = (KS)21.

– (SK
∗)22 = (KS)22: by (27) it follows that SΓeK∗

Γe
= KΓeSΓe on Γe. Thus, we

have only to prove that

SΓi

∂

∂νi
S�e [ϕe] = DΓi SΓe [ϕe] on Γe,

which follows from Lemma 3.3 (i) by setting u(x) = SΓe [ϕe](x) and E = D.

This completes the proof. ��

3.4. K
∗ Is Symmetrizable

Let Cp(H), 1 � p < ∞, be the Schatten–von Neumann class of compact oper-
ators acting on H (see [10]). We recall that a compact operator A on H is in the
Schatten–von Neumann class Cp(H), with 1 � p < ∞, if the sequence of its singu-
lar values is in l p = {(μn)n∈Z :∑n∈Z

|μn|p < ∞}. An equivalent characterization
is
∑

n ||AΦn||p < ∞ for any orthonormal basis (Φn) of H. The elements of C2(H)

are the Hilbert–Schmidt operators. It is proved in [17] that K∗
Γi

∈ C2(L2(Γi )) and

K∗
Γe

∈ C2(L2(Γe)) are Hilbert–Schmidt operators. On the other hand, ∂
∂νi

SΓe and
∂

∂νe
SΓi are Hilbert–Schmidt operators on L2(Γi ) and L2(Γe), respectively, because

they have smooth integral kernels. Thus they belong to C2. So we easily have the
following lemma.

Lemma 3.5 K
∗ ∈ C2(H).

By Lemma 3.2, −S is self-adjoint and −S � 0 on H. Thus there exists a unique
square root of −S, which we denote by

√−S; furthermore,
√−S is self-adjoint and√−S � 0 (see for instance Theorem 13.31 in [36]). We now look into the kernel

of S. If Φ = (ϕi , ϕe) ∈ Ker(S), then the function u defined by

u(x) := SΓi [ϕi ](x) + SΓe [ϕe](x), x ∈ R
2

satisfies u = 0 on Γi and Γe. Therefore, u(x) = 0 for all x ∈ Ω . It then follows
from (9) that ϕi = 0 and

K∗
Γe

[ϕe] = 1

2
ϕe on Γe. (33)

If ϕe ∈ L2
0(Γe), then u(x) → 0 as |x | → ∞, and hence u(x) = 0 for x ∈ R

2 \Ω as
well. Thus ϕe = 0. The eigenfunctions of (33) make a one-dimensional subspace
of L2(Γe), which means that Ker(S) is of at most one dimension.
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We now recall a result of Khavinson et al. [17, proof of Theorem 1]: let
M ∈ Cp(H). If there exists a strictly positive bounded self-adjoint operator R such
that R2 M is self adjoint, then there is a bounded self-adjoint operator A ∈ Cp(H)

such that

AR = RM. (34)

We use this result and (28) to show that there is a bounded self-adjoint operator A

on Ran(S) such that

A

√−S = √−SK
∗. (35)

By defining A to be 0 on Ker(S), we extend A to H. We note that (35) still holds and
the extended operator is self-adjoint in H. In fact, if Φ ∈ Ker(S), then K

∗[Φ] = 1
2Φ

because of (33), and hence
√−SK

∗[Φ] = 0. Moreover, if Φ,Ψ ∈ H, then we can
decompose them as Φ = Φ1 +Φ2 and Ψ = Ψ1 +Ψ2, where Φ1, Ψ1 ∈ Ran(S) and
Φ2, Ψ2 ∈ Ker(S). Let Φ1 = √−SΦ̃1 and Ψ1 = √−SΨ̃1. We then get

〈AΦ,Ψ 〉 = 〈AΦ1, Ψ 〉 = 〈A√−SΦ̃1, Ψ 〉 = 〈√−SK
∗Φ̃1, Ψ 〉

= 〈√−SK
∗Φ̃1, Ψ1〉 = 〈AΦ1, Ψ1〉 = 〈Φ1, AΨ1〉 = 〈Φ, AΨ 〉,

and hence A is self-adjoint on H.
We obtain the following theorem.

Theorem 3.6 There exists a bounded self-adjoint operator A ∈ C2(H) such that

A

√−S = √−SK
∗. (36)

4. Limiting Properties of the Solution and the Electromagnetic Power
Dissipation

Let Vδ be the solution to (3) with α = 1. In this section we derive a necessary
and sufficient condition on the source f , which is supported outside Ω , such that
the blow-up (4) of the power dissipation takes place.

The solution Vδ can be represented as

Vδ(x) = F(x) + SΓi [ϕδ
i ](x) + SΓe [ϕδ

e ](x), (37)

where Φδ = (ϕδ
i , ϕ

δ
e ) ∈ L2

0(Γi ) × L2
0(Γe) is the solution to (18). Since

∫

Ω\D |∇F |2dx < ∞, (4) occurs if and only if

δ

∫

Ω\D

∣
∣∇(SΓi [ϕδ

i ] + SΓe [ϕδ
e ])
∣
∣2 dx → ∞ as δ → ∞. (38)

One can use (9) to obtain
∫

Ω\D

∣
∣∇(SΓi [ϕδ

i ] + SΓe [ϕδ
e ])
∣
∣2 dx = −1

2
〈Φδ, SΦδ〉 + 〈K∗Φδ, SΦδ〉,
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where 〈 , 〉 is the Hermitian product on H. We then get from (36)
∫

Ω\D

∣
∣∇(SΓi [ϕδ

i ] + SΓe [ϕδ
e ])
∣
∣2 dx

= 1

2
〈√−SΦδ,

√−SΦδ〉 − 〈A√−SΦδ,
√−SΦδ〉. (39)

Since A is self-adjoint, we have an orthogonal decomposition

H = KerA ⊕ (KerA)⊥, (40)

and (KerA)⊥ = RangeA. Let P and Q = I − P be the orthogonal projections from
H onto KerA and (KerA)⊥, respectively. Let λ1, λ2, . . . with |λ1| � |λ2| � · · ·
be the nonzero eigenvalues of A and let Ψn be the corresponding (normalized)
eigenfunctions. Since A ∈ C2(H), we have

∞∑

n=1

λ2
n < ∞, (41)

and

AΦ =
∞∑

n=1

λn〈Φ,Ψn〉Ψn, Φ ∈ H. (42)

We apply
√−S to (18) to obtain

(zδ

√−S + √−SK
∗)Φδ = √−Sg.

Then (36) yields

(zδI + A)
√−SΦδ = √−Sg, (43)

and hence

P
√−SΦδ = 1

zδ

P
√−Sg,

zδ Q
√−SΦδ + AQ

√−SΦδ = Q
√−Sg.

Thus we get

Q
√−SΦδ =

∑

n

〈Q
√−Sg, Ψn〉
λn + zδ

Ψn .

We also get

A

√−SΦδ =
∑

n

λn〈Q
√−Sg, Ψn〉
λn + zδ

Ψn .

Thus we have

〈√−SΦδ,
√−SΦδ〉 = 1

|zδ|2 ‖P
√−Sg‖2 +

∑

n

|〈Q
√−Sg, Ψn〉|2
|λn + zδ|2 , (44)
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and

〈A√−SΦδ,
√−SΦδ〉 =

∑

n

λn|〈Q
√−Sg, Ψn〉|2

|λn + zδ|2 . (45)

Since

|λn + zδ|2 =
(

λn − δ2

2(4 + δ2)

)2

+ δ2

(4 + δ2)2 ≈ λ2
n + δ2

and λn → 0 as n → ∞, we have
∫

Ω\D

∣
∣∇(SΓi [ϕδ

i ] + SΓe [ϕδ
e ])
∣
∣2 dx ≈ 1

δ2 ‖P
√−Sg‖2 +

∑

n

|〈Q
√−Sg, Ψn〉|2
|λn|2 + δ2 .

(46)

Here and throughout this paper A ≈ B means that there are constants C1 and C2
such that

C1 A � B � C2 A.

We note that if Ker(K∗) = {0}, then P
√−S = 0. To see this, let Φ0 be a basis

of Ker(S). Then we have K
∗Φ0 = 1

2Φ0. If A
√−SΦ = 0, then

√−SK
∗Φ = 0

by (36). Therefore K
∗Φ ∈ Ker(S). If Ker(K∗) = {0}, then Φ = cΦ0 for some

constant c. This means that P
√−S = 0.

We obtain the following theorem:

Theorem 4.1 If P
√−Sg = 0, then (4) takes place. If Ker(K∗) = {0}, then (4)

takes place if and only if

δ
∑

n

|〈√−Sg, Ψn〉|2
λ2

n + δ2 → ∞ as δ → 0. (47)

The condition (47) gives a necessary and sufficient condition on the source term
f for the blow up of the electromagnetic power dissipation in Ω \ D when α = 1.
This condition is in terms of the Newtonian potential of f . In the next section,
we explicitly compute the eigenvalues and eigenfunctions of A for the case of an
annulus configuration. In particular, we show the existence of a cloaking region
such that if f is supported outside that region, then there is no blow up, while if it
is supported inside and satisfies certain conditions, there is a blow up and CALR
occurs.

5. Anomalous Resonance in an Annulus

In this section we consider the anomalous resonance when the domains Ω and
D are concentric disks. We calculate the explicit form of the limiting solution.
Throughout this section, we set Ω = Be = {|x | < re} and D = Bi = {|x | < ri },
where re > ri .
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Let Γ = {|x | = r0}. One can easily see that for each integer, n,

SΓ [einθ ](x) =

⎧
⎪⎪⎨

⎪⎪⎩

− r0

2|n|
(

r

r0

)|n|
einθ if |x | = r < r0,

− r0

2|n|
(r0

r

)|n|
einθ if |x | = r > r0,

(48)

and hence

∂

∂r
SΓ [einθ ](x) =

⎧
⎪⎪⎨

⎪⎪⎩

−1

2

(
r

r0

)|n|−1

einθ if |x | = r < r0,

1

2

(r0

r

)|n|+1
einθ if |x | = r > r0.

(49)

It then follows from (9) that

K∗
Γ [einθ ] = 0 ∀n = 0. (50)

It is worth mentioning that this property was observed in [15] and immediately
follows from the fact that

K∗
Γ [ϕ] = 1

4πr0

∫

Γ

ϕdσ.

We also get from (20) and (21)

DΓ [einθ ](x) =

⎧
⎪⎪⎨

⎪⎪⎩

1

2

(
r

r0

)|n|
einθ if |x | = r < r0,

−1

2

(r0

r

)|n|
einθ if |x | = r > r0.

Because of (50) it follows that

K
∗ =
⎡

⎢
⎣

0 − ∂

∂νi
S�e

∂

∂νe
S�i 0

⎤

⎥
⎦ ,

and hence we have from (49) that

K
∗
[

einθ

0

]

= 1

2
ρ|n|+1
[

0
einθ

]

(51)

and

K
∗
[

0
einθ

]

= 1

2
ρ|n|−1
[

einθ

0

]

(52)

for all n = 0, where

ρ = ri

re
.
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Thus K
∗ as an operator on H has the trivial kernel, that is,

Ker K
∗ = {0}. (53)

According to (51) and (52), if Φ is given by

Φ =
∑

n =0

[
ϕn

i
ϕn

e

]

einθ ,

then

K
∗Φ =
∑

n =0

⎡

⎢
⎢
⎣

ρ|n|−1

2
ϕn

e

ρ|n|+1

2
ϕn

i

⎤

⎥
⎥
⎦ einθ .

Thus, if g is given by

g =
∑

n =0

[
gn

i
gn

e

]

einθ ,

the integral equations (18) are equivalent to
⎧
⎪⎪⎨

⎪⎪⎩

zδϕ
n
i + ρ|n|−1

2
ϕn

e = gn
i ,

zδϕ
n
e + ρ|n|+1

2
ϕn

i = gn
e ,

(54)

for every |n| � 1. It is readily seen that the solution Φ = (ϕi , ϕe) to (54) is given
by

ϕi = 2
∑

n =0

2zδgn
i − ρ|n|−1gn

e

4z2
δ − ρ2|n| einθ ,

ϕe = 2
∑

n =0

2zδgn
e − ρ|n|+1gn

i

4z2
δ − ρ2|n| einθ .

If the source is located outside the structure, that is, f is supported in R
2 \ Be,

then the Newtonian potential of f, F , is harmonic in Bre and

F(x) = c −
∑

n =0

gn
e

|n|r |n|−1
e

r |n|einθ , (55)

for |x | � re, where g is defined by (17). Thus we have

gn
i = −gn

e ρ|n|−1. (56)

Here, gn
e is the Fourier coefficient of − ∂ F

∂νe
on Γe, or in other words,

− ∂ F

∂νe
=
∑

n =0

gn
e einθ . (57)
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We then get
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ϕi = −2
∑

n =0

(2zδ + 1)ρ|n|−1gn
e

4z2
δ − ρ2|n| einθ ,

ϕe = 2
∑

n =0

(2zδ + ρ2|n|)gn
e

4z2
δ − ρ2|n| einθ .

(58)

Therefore, from (48) we find that

SΓi [ϕi ](x) + SΓe [ϕe](x) =
∑

n =0

2(r2|n|
i − r2|n|

e )zδ

|n|r |n|−1
e (4z2

δ − ρ2|n|)
gn

e

r |n| einθ , re < r = |x |,

(59)

and

SΓi [ϕi ](x) = −
∑

n =0

r2|n|
i (2zδ + 1)

|n|r |n|−1
e (ρ2|n| − 4z2

δ )

gn
e

r |n| einθ , ri < r = |x | < re, (60)

SΓe [ϕe](x) = g
∑

n =0

(2zδ + ρ2|n|)
|n|r |n|−1

e (ρ2|n| − 4z2
δ )

gn
e r |n|einθ , ri < r = |x | < re. (61)

We next obtain the following lemma which provides essential estimates for the
investigation of this section.

Lemma 5.1 There exists δ0 such that

Eδ :=
∫

Be\Bi

δ|∇Vδ|2 ≈
∑

n =0

δ|gn
e |2

|n|( δ2

4 + ρ2|n|)
(62)

uniformly in δ � δ0.

Proof. Using (55), (60), and (61), one can see that

Vδ(x) = c + re

∑

n =0

[
r2|n|

i

r |n| (2zδ + 1) − (4z2
δ + 2zδ)r

|n|
]

gn
e einθ

|n|r |n|
e (4z2

δ − ρ2|n|)
.

Then straightforward computations yield that

Eδ ≈ r2
e

∑

n =0

δ(1 − ρ2|n|)
∣
∣
∣
∣
∣

2zδ + 1

4z2
δ − ρ2|n|

∣
∣
∣
∣
∣

2

(4|zδ|2 + ρ2|n|) |g
n
e |2

|n| .

If δ is sufficiently small, then one can also easily show that

|4z2
δ − ρ2|n|| ≈ δ2

4
+ ρ2|n|.

Therefore we get (62) and the proof is complete. ��
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It is worth noticing that estimate (62) is exactly the same as the one from The-
orem 4.1, since the eigenvalues of A are {±ρ|n|/2}. To see this fact, we restrict the

identity A
√−S = √−SK

∗ to the vectorial space spanned by

[
0

einθ

]

and

[
einθ

0

]

.

Taking the trace and the determinant of the restricted identity and using (51) and
(52) proves that the set of eigenvalues of A is {±ρ|n|/2}.

Now, we turn to Lemma 5.1. We investigate the behavior of the series in the
right-hand side of (62). Let

Nδ = log(δ/2)

log ρ
. (63)

If |n| � Nδ , then δ/2 � ρ|n|, and hence

∑

n =0

δ|gn
e |2

|n|( δ2

4 + ρ2|n|)
�
∑

0 =|n|�Nδ

δ|gn
e |2

|n|( δ2

4 + ρ2|n|)
� 1

2

∑

0 =|n|�Nδ

δ|gn
e |2

|n|ρ2|n| . (64)

Suppose that

lim sup
|n|→∞

|gn
e |2

|n|ρ|n| = ∞. (65)

Then there is a subsequence {nk} with |n1| < |n2| < · · · such that

lim
k→∞

|gnk
e |2

|nk |ρ|nk | = ∞. (66)

If we take δ = 2ρ|nk |, then Nδ = |nk | and

∑

0 =|n|�Nδ

δ|gn
e |2

|n|ρ2|n| = ρ|nk | ∑

0 =|n|�|nk |

|gn
e |2

|n|ρ2|n| � |g|nk |
e |2

|nk |ρ|nk | . (67)

Thus we obtain from (62) that

lim
k→∞ Eρ|nk | = ∞. (68)

We emphasize that (65) is not enough to guarantee (4), as pointed out by
Jianfeng Lu and Jens Jorgensen (private communication). In fact, if we let

gn
e =
{

nρn/2, if n = 2 j , j = 1, 2, . . . ,

0, otherwise,
(69)

and δk = ρnk with nk = 2k + 2k−1 for k = 1, 2, . . ., then

lim sup
n→∞

|gn
e |2

|n|ρ|n| = ∞.
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But one can easily see that |2 j − nk | � 2 j−2 and

ρnk+2 j

ρ2nk + ρ2 j+1 < ρ|nk−2 j |, j, k = 1, 2, . . . .

Thus we obtain

∑

n =0

δk |gn
e |2

|n|(δ2
k + ρ2|n|)

=
∞∑

j=1

2 jρnk+2 j

ρ2nk + ρ2 j+1 �
∞∑

j=1

2 jρ|nk−2 j | �
∞∑

j=1

2 jρ2 j−2
< ∞,

which means that

Eδk � C, (70)

regardless of k. It is worth mentioning that the gn
e defined by (69) are certainly

Fourier coefficients of − ∂ F
∂νe

on Γe for an F which is harmonic in Br∗ , given by
(55) when |x | � r∗. Also, there is a source function which generates these Fourier
coefficients. To see this, choose r1 and r2 with re < r1 < r2 < r∗ and let τ(r),
be a function which is 1 for r < r1, and zero for r > r2 and which smoothly
interpolates between these values in the interval r1 � r � r2. Then we see that
F̃(x) defined to be zero for |x | � r2 and equal to τ(|x |)F(x) for |x | < r2, has
the same Fourier coefficients gn

e as F on Γe, and the associated source function
f̃ = �F̃ is supported in the annulus between |x | = r1 and |x | = r2. However,
it is not clear whether the Fourier coefficients can be realized as being associated
with a Newtonian potential of a source function whose support is located outside
the radius re and not surrounding the annulus.

We now impose an additional condition. We assume that {gn
e } satisfies the fol-

lowing gap property:

GP: There exists a sequence {nk} with |n1| < |n2| < · · · such that

lim
k→∞ ρ|nk+1|−|nk | |gnk

e |2
|nk |ρ|nk | = ∞.

If GP holds, then we immediately see that (65) holds, but the converse is not true.
If (65) holds, that is, there is a subsequence {nk} with |n1| < |n2| < · · · satisfying
(66) and the gap |nk+1| − |nk | is bounded, then GP holds. In particular, if

lim
n→∞

|gn
e |2

|n|ρ|n| = ∞, (71)

then GP holds.
Assume that {gn

e } satisfies GP and {nk} is such a sequence. Let δ = 2ρα for
some α and let k(α) be the number such that

|nk(α)| � α < |nk(α)+1|.



Cloaking Due to Anomalous Localized Resonance 687

Then, we have

∑

0 =|n|�Nδ

δ|gn
e |2

|n|ρ2|n| = ρα
∑

0 =|n|�α

|gn
e |2

|n|ρ2|n| � ρ|nk(α)+1|−|nk(α)| |gnk(α)
e |2

|nk(α)|ρ|nk(α)| → ∞,

(72)

as α → ∞.
We obtain the following lemma:

Lemma 5.2 If (65) holds, then

lim sup
δ→0

Eδ = ∞. (73)

If {gn
e } satisfies the condition GP, then

lim
δ→0

Eδ = ∞. (74)

Suppose that the source function is supported inside the radius r∗ =
√

r3
e r−1

i .
Then its Newtonian potential cannot be extended harmonically in |x | < r∗ in gen-
eral. So, if F is given by

F = c −
∑

n =0

anr |n|einθ , r < re, (75)

then the radius of convergence is less than r∗. Thus we have

lim sup
|n|→∞

|n||an|2r2|n|∗ = ∞, (76)

that is, (65) holds. The GP condition is equivalent to stating that there exists {nk}
with |n1| < |n2| < · · · such that

lim
k→∞ ρ|nk+1|−|nk ||nk ||ank |2r2|nk |∗ = ∞. (77)

The following is the main theorem of this section.

Theorem 5.3 Let f be a source function supported in R
2 \ Be and let F be the

Newtonian potential of f .

(i) If F does not extend as a harmonic function in Br∗ , then weak CALR occurs,
that is,

lim sup
δ→0

Eδ = ∞ (78)

and (5) holds with a = r2
e /ri .

(ii) If the Fourier coefficients of F satisfy (77), then CALR occurs, that is,

lim
δ→0

Eδ = ∞ (79)

and (5) holds with a = r2
e /ri .
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(iii) If F extends as a harmonic function in a neighborhood of Br∗ , then CALR
does not occur, that is,

Eδ < C (80)

for some C independent of δ.

Proof. If F does not extend as a harmonic function in Br∗ , then (65) holds. Thus
we have (78). If (77) holds, then (79) holds by Lemma (5.2). Moreover, by (59),
we see that

|Vδ| � |F | +
∑

n =0

∣
∣
∣
∣
∣

2(r2|n|
i − r2|n|

e )zδ

|n|r |n|−1
e (4z2

δ − ρ2|n|)
gn

e

r |n|

∣
∣
∣
∣
∣
� |F | + C

∑

n =0

δr |n|
e

( δ2

4 + ρ2|n|)|n|r |n|

� |F | + C
∑

n =0

r2|n|
e

|n|r |n|
i r |n| < C, if r = |x | >

r2
e

ri

for some constants C , which may differ at each occurrence.
If F extends as a harmonic function in a neighborhood of Br∗ , then the power

series of F , which is given by (55), converges for r < r∗ + 2ε for some ε > 0.
Therefore, there exists a constant C such that

|gn
e |

|n|r |n|−1
e

� C
1

(r∗ + ε)|n|

for all n. It then follows that

|gn
e | � C(r2

e ρ−1 + reε)
−|n|/2r |n|

e � (ρ−1 + ε)−|n|/2 (81)

for all n. This tells us that

∑

n =0

δ|gn
e |2

|n|(δ2 + ρ2|n|)
�
∑

n =0

|gn
e |2

2|n|ρ|n| �
∑

n =0

1

2|n|(1 + ερ)|n| .

This completes the proof. ��
If f is a dipole in Br∗ \ Be, that is, f (x) = a · ∇δy(x) for a vector a and

y ∈ Br∗ \ Be where δy is the Dirac delta function at y, then F(x) = a · ∇G(x − y).
From the expansion of the fundamental solution

G(x − y) =
∞∑

n=1

−1

2πn

[
cos nθy

rn
y

rn cos nθ + sin nθy

rn
y

rn sin nθ

]

+ C, (82)

we see that the Fourier coefficients of F have the growth rate r−n
y and satisfy (77),

and hence CALR takes place. Similarly CALR takes place for a sum of dipole
sources at different fixed positions in Br∗ \ Be. We emphasize that this fact was
found in [27].
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If f is a quadrapole, that is, f (x) = A : ∇∇δy(x) = ∑2
i, j=1 ai j

∂2

∂xi ∂x j
δy(x)

for a 2 × 2 matrix A = (ai j ) and y ∈ Br∗ \ Be, then F(x) =∑2
i, j=1 ai j

∂2G(x−y)
∂xi ∂x j

.
Thus CALR takes place. This is in agreement with the numerical result in [34].

If f is supported in R
2 \ Br∗ , then F is harmonic in a neighborhood of Br∗ ,

and hence CALR does not occur by Theorem 5.3. In fact, we can say more about
the behavior of the solution Vδ as δ → 0 which is related to the observation in
[30,33] that in the limit δ → 0 the annulus itself becomes invisible to sources that
are sufficiently far away.

Theorem 5.4 If f is supported in R
2 \ Br∗ , then (80) holds (with α = 1 in (3)).

Moreover, we have

sup
|x |�r∗

|Vδ(x) − F(x)| → 0 as δ → 0. (83)

Proof. Since supp f ⊂ R
2 \ Br∗ , the power series of F , which is given by (55),

converges for r < r∗ + 2ε for some ε > 0.
According to (59), if re < r = |x |, then we have

Vδ(x) − F(x) =
∑

n =0

2(r2|n|
e − r2|n|

i )zδ

|n|r |n|−1
e (ρ2|n| − 4z2

δ )

gn
e

r |n| einθ .

If |x | = r∗, then the identity

(r2|n|
e − r2|n|

i )zδ

|n|r |n|−1
e (ρ2|n| − 4z2

δ )

gn
e

r |n|∗
= (1 − ρ2|n|)zδ

(ρ|n| − 4z2
δρ

−|n|)
gn

e r |n|∗
|n|r |n|−1

e

holds and
∣
∣
∣
∣
∣

(1 − ρ2|n|)zδ

(ρ|n| − 4z2
δρ

−|n|)

∣
∣
∣
∣
∣
�
∣
∣
∣
∣
∣

1

(z−1
δ ρ|n| − zδρ−|n|)

∣
∣
∣
∣
∣

�
∣
∣
∣
∣
∣

1

�(z−1
δ ρ|n| − zδρ−|n|)

∣
∣
∣
∣
∣
=
(

δ

4 + δ2 ρ−|n| + 1

δ
ρ|n|
)−1

.

It then follows from (81) that

|Vδ(x) − F(x)| � 2
∑

n =0

(
δ

4 + δ2 ρ−|n| + 1

δ
ρ|n|
)−1 re

|n|
(

ρ−1

ρ−1 + ε

)|n|/2

,

and hence

|Vδ(x) − F(x)| → 0 as δ → 0.

Since Vδ − F is harmonic in |x | > re and tends to 0 as |x | → ∞, we obtain
(83) by the maximum principle. This completes the proof. ��

Theorem 5.4 shows that any source supported outside Br∗ cannot make the
blow-up of the power dissipation happen and is not cloaked. In fact, it is known
that we can recover the source f from its Newtonian potential F outside Br∗ since
f is supported outside Br∗ (see [14]). Therefore we infer from (83) that f may be
recovered approximately by observing Vδ outside Br∗ .
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6. Conclusion

In this paper we have provided for the first time a mathematical justification
of cloaking due to anomalous localized resonance in the case of general source
terms. In particular, we obtained an explicit necessary and sufficient condition on
the source term in order for CALR to take place. In the case of an annulus struc-
ture we show that weak CALR takes place for almost any source supported inside
the critical radius. We also find a sufficient condition on the Fourier coefficients
of the Newtonian potential of the source function for CALR to occur. It would be
quite interesting to clarify whether weak CALR implies CALR, or not, for sources
whose support does not completely surround the annulus.

The results and techniques of this paper can be immediately extended to the
three-dimensional case. The compact operator K

∗ is in the Schatten Von-Neumann
class Cp(L2(Γi ) × L2(Γe)) for some 1 � p < ∞, provided that Ω and D are of
class C1,α for 0 < α < 1, and consequently, it is symmetrizable.
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