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Abstract 

We describe a fully discrete method for the numerical solution of the hypersingular integral equation arising from the 
combined double- and single-layer approach for the solution of the exterior Neumann problem for the two-dimensional 
Helmholtz equation in smooth domains. We develop an error analysis in a H61der space setting with pointwise estimates 
and prove an exponential convergence rate for analytic boundaries and boundary data. 
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1. Introduction 

The mathematical treatment of the scattering of time-harmonic acoustic or electromagnetic 
waves by an infinitely long cylindrical obstacle with a simply connected bounded cross-section 
D c R 2 leads to exterior boundary value problems for the Helmholtz equation 

A u + k 2 u = O  i n R 2 \ D  (1.1) 

with wave number k > 0. In the subsequent analysis we denote by F the boundary of D and by v the 
outward unit normal to F. For the time being, we assume that the boundary F is C 2. The field u is 
decomposed, u = u i + u s, into the given incident field u i, which is assumed to be an entire solution 
to the Helmholtz equation, and the unknown scattered field u s, which is required to satisfy the 
Sommerfeld radiation condition 

) l i m v / r \ 0  r - i k u  s = 0 ,  r = l x [ ,  (1.2) 
r ---~ o o  
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uniformly in all directions. Depending on the physical nature of the scattering obstacle, the total 
field u has to satisfy a boundary condition on F. The Neumann condition 

~U 
- - = 0  o n F  (1.3) 
Ov 

in acoustics corresponds to scattering from a sound-hard obstacle whereas in electromagnetics it 
models scattering from a perfect conductor with the electromagnetic field H-polarized. 

After renaming the unknown function, the scattering problem (1.1)-(1.3) is a special case of the 
following exterior Neumann problem: Given a function g ~ C°" (F) ,  0 < a < 1, find a solution 
12 ~ C 2 (~2 \ / ~ )  (-~ C 1, e ([]~2 \ D) to the Helmholtz equation which satisfies the Sommerfeld radiation 
condition and the boundary condition 

OU 
~?v = g on F. (1.4) 

For details of the uniqueness and the existence analysis for this boundary value problem we refer to 
[3, 4]. (We also use the notations of [3, 4-1 in the subsequent analysis.) The uniqueness is ensured 
through the radiation condition via Rellich's lemma. The existence of a solution can be based on 
boundary integral equations. We denote the fundamental solution to the Helmholtz equation in ~2 
by 

q~(x, y): = ¼ iH~ol)(klx - Yl ), 

where Ho ~1) is the Hankel function of order zero and of the first kind. In order to arrive at a uniquely 
solvable integral equation, we seek the solution to the exterior Neumann problem in the form of 
a combined acoustic double- and single-layer potential 

u(x) = f,. ~ '~¢'(x'-y) } i [ dv(y) iqq~(x,y) (p(y) ds(y), x e N2\/), (1.5) 

with unknown density (pc CI"~(F) and some real coupling parameter r/. Then from the jump 
relations for single- and double-layer potentials it follows that (1.5) solves the exterior Neumann 
problem provided the density is a solution of the integral equation 

T~o - iq K'tp + iqtp = 2g, (1.6) 

where K '  and T denote the integral operators defined by 

(K'tp)(x):= 2~ 8cI)(x,y) ¢p(y)ds(y), xe  F, 
Jr Ov(x) 

and 

(Ttp)(x):= 2 g--~) Jr By(y) (p(y) ds(y), x e  F. 
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In our analysis we will also need the integral operator S defined by 

(Stp)(x):= 2 fr ~(x,y) tp(y) ds(y), x e F. 

The approach (1.5) for the solution of exterior boundary value problems for the Helmholtz 
equation was introduced independently by Leis [-91, Brakhage and Werner [1,1, and Panich [15,1 in 
order to remedy the nonuniqueness deficiency of the classical integral equations when k is 
a so-called irregular wave number or internal resonance. Whereas for the exterior Dirichlet 
problem the combined double- and single-layer approach does not pose any difficulty in the 
discussion of the resulting integral equation of the second kind in the framework of the Riesz theory 
for compact operators, for the exterior Neumann problem technical difficulties arise due to the 
singular behavior of the normal derivative of the double-layer potential, i.e., the fact that the 
integral equation (1.6) contains the hypersingular operator T. This requires the use of regulariz- 
ation techniques in order to allow the application of the Riesz theory, as described for example in 
[,3,4,1. 

From a numerical point of view, since the regularizations (or its discretized versions) involve 
additional computational costs, it is preferable to use the unregularized equation (1.6) for numer- 
ical approximations. Despite the fact that the boundary integral equation (1.6) or modifications of 
it have been widely used in the literature for numerical approximations for a long time already (see 
[-2, 8] among others), there seems to be a lack of a rigorous error and convergence analysis due to 
the hypersingular behavior of T. In this paper we describe a very efficient fully discrete method for 
the numerical solution of the hypersingular integral equation (1.6) for analytic boundary curves 
F by a quadrature method based on trigonometric interpolation including a convergence analysis 
which mimics a regularization procedure. After we gave a complete description of the correspond- 
ing numerical method based on the combined double- and single-layer approach (1.5) for the 
exterior Dirichlet problem in the monograph [,4], we felt the need and obligation to give an 
analogous presentation for the exterior Neumann problem. 

Our error and convergence analysis is closely related to the more general results on collocation 
methods for singular integral equations and pseudodifferential equations via trigonometric inter- 
polation by McLean et al. [12, 13]. However, the convergence analysis for our fully discrete method 
is not included in the results of [13,1, since we consider a periodic pseudodifferential operator where 
the compact perturbation of the principal part is only marginally smoother than the principal part 
itself. A trigonometric Galerkin method for the hypersingular integral equation in the limiting case 
k = 0 of Laplace's equation has been considered by Rathsfeld et al. [18]. Our analysis contains 
a condensed and simplified version of the work of M6nch [,14,1 who gave the first pointwise error 
analysis for the approximation of the hypersingular operator T for the Helmholtz equation via 
trigonometric interpolation and collocation. An error analysis for our numerical method in 
a Sobolev space setting can be worked out by means of the results in [7]. 

The plan of the paper is as follows. In Section 2 we give the parametrized form of the integral 
equation and describe an appropriate splitting of the various singularities. Then in Section 3 we 
present our fully discrete quadrature method based on trigonometric interpolation. The error and 
convergence analysis is carried out in Section 4. Section 5 of the paper concludes with a numerical 
example illustrating the fast convergence rate of our method for analytic data. 
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2. Parametrization of the integral equations 

We proceed by describing the parametrization of the integral equation (1.6). From now on, we 
assume that the boundary curve F is analytic and given through 

F = {x(t) = (xl(t),Xz(t)): 0 <<. t <<. 2zt}, 

where x : ~  --* ~2 is analytic and 2n-periodic with [x'(t)] > 0 for all t, such that the orientation of 
F is counterclockwise. Using HI 1) = - H(o It, where HI a) denotes the Hankel function of order one 
and of the first kind, we see that the kernel H in 

f? 1 H(t, r) (o(x(z)) dr (2.1) 
Ix'(t)l 

( K '  ~ o ) ( x ( t ) )  = - -  

is given by 

ik H ] " ( k l x ( t )  - x(r)l)Ix'(r)l 
H(t, z):= ~- n(t)" [x(z) -- x(t)] Ix(t) - x(r)] 

where we have set n(t):= I x'(t)lv(x(t)) = (x~(t), - x~ (t)). We decompose the fundamental solution 
H(o ~) = do + iNo, and use the power series 

Jo(Z)= ~ ( - 1 ' " ( 2 )  2n 
, -o  ~ ! ~  (2.2) 

for the Bessel function of order zero and 

2 (  z ) 2 ~ { ~ 1 ) ( - 1 ,  " + ' ( 2 )  2" No(z) = ~ In ~ + C Jo(z) + - (2.3) n,=l ,.=x (n!) 2 

for the Neumann function of order zero with Euler's constant C = 0.57721 . . . .  From these series 
we can see that the kernel H can be written in the form 

H(t,z)= H,(t,z)ln(gsin2 t-2-z-) + H2(t,z), 

where 

k - / x ( k l x ( t )  - x(z)]) 
Ht(t,r):= 27tn(t)'Ux(r)- x(t)3 Ix(t)- x(r)[ Ix'(r)l, 

H2(t,z):= H( t , z ) -  H~(t,z)ln(4sin2 ~ ~-) 

turn out to be analytic with the diagonal terms 

1 n(t)'x"(t) 
Hl(t,t) = O, H2(t,t) - 2n Ix'(t)[ 

(Of course, J1 = - -/6 denotes the Bessel function of order one.) 
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For the parametrization of the hypersingular operator T we make use of the identity 

T = ~ S + k2v'S(vcP) (2.4) 

for the normal derivative of the double-layer potential for densities cp e C I'~(F) which is due to 
Maue [111. For a derivation of (2.4) we refer to [3, p. 57] for the three-dimensional case and to [6, 
p. 102] for the two-dimensional case with k = 0. The identity (2.4) indicates that we need a par- 
ametrization of S. From the expansions (2.2) and (2.3) we see that the kernel 

i Htol)(klx(t) _ x(r)]) M(t , r ) := ~ 

of 

~0 2~ (Sq~)(x(t)) = M(t, r)Ix'(r)l ~p(x(r)) dr (2.5) 

can be expressed in the form 

M(t,r) = Ma(t,z)ln(4sin2 t--2J-) + M2(t, r), 

where 

1 
Ml(t , r )  : -  2n Jo(klx(t) - x(r)l), 

. 2 t - - r ~  
M2(t,z):= M(t,r) -- Ml(t ,r) ln 4sin - 2 - )  

again are analytic with diagonal terms 

1 M 2 ( t , t )  = i C llnklX'(t)l 
M1(t,t) - 2rt' 2 n rt 2 " 

We define 

~2 
N(t, r) := - -  

Ot dr f ~ H ~ o l ) ( k l x ( t ) - x ( z ) l ) q - l l n ( 4 s i n 2 ~ - Z ) }  

and can deduce from the expansions (2.2) and (2.3) that 

N(t,z) N l ( t , z ) l n ( 4 s i n 2 t 2  z )  = - -  + N2(t,z), 
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where  

1 8 2 
N1 (t, r ) :=  2rt 8t 8r Jo(klx(t) - x(r)[), 

N2(t,z):= N(t ,r)--  Nl ( t , r ) ln(4s in2t  Z2-----z-z ) 

are analyt ic  funct ions  wi th  d iagona l  t e rms  

Nl(t,t) = 
k2lx'(t)] 2 

4rt 

and  

N 2 ( t ' t ) = O t i - 1 - 2 C - 2 1 n ~ )  k21x'(t)124n 

1 [x'(t)" x"(t)]  2 I x"(t)l 2 x'(t).x'"(t) 
+ ~ + 2rclx,(t)l 4 4•lx'(t)l 2 6rclx'(t)l 2 • 

Therefore ,  we can  carry  ou t  a par t ia l  in tegra t ion  in 

dss S (x(t)) = ~2 N -~ Ht°~)(klx(t) - x(r)]) d r  

to  arr ive at 

(d ~)  1 f;~{1 z - td tp (x ( r ) )  N(t,r)qg(x(r))}dr. (2.6) 
S (x( t ) )  = Ix'(t)---~ ~ cot ~ -  d ~  - -  

U s i n g  the  Bessel differential  equa t ion  for H~o ~, we can  c o m p u t e  the fol lowing explicit  expressions:  

i f t N(t,r) ~NIt,~) k~B~'(klx(t)-x(OI) 2kn?~(klx(t)- x(gll = - 

ikx'(t)'x'(z) 1 1 

and  

Nl (t, O = ~ N (t, z) k2 Jo(klx(t) - x(z)l) - 2kJ l (klx(t) - x(z)l) 
Ix(t) - x(z)} 

k x '  (t)" x'(z) 
J1 (klx(t) - x(OI),  

2nix( t )  - x(z)l 

where  we have  set 

x ' ( t ) .  (x( t )  - x ( r ) )  x ' (~) .  (x( t )  - x ( g )  
U, T):= 

Ix ( t t  - x(r)l 2 
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If we now piece (2.1) and (2.4)-(2.6) together, we see that the parametrized integral equation (1.6) 
is of the form 

l f ~  L~  -~ f ~  2---~ cot 0'(T)dz + K(t,z)O(z) d~ + a(t)g/(t) =f(t), 0 ~ t ~< 2~, (2.7) 

for the unknown function 0(t):= ~o (x(t)) and the right-hand side given by f(t):= 2lx'(t)lg(x(t)). 
We have set aCt):= iqlx'(t)l and the kernel 

K(t, z):= k 2 M(t, z)x'(t), x'(z) - N(t, z) - iq Hit, z) 

can be written as 

K(t ,z)= K l ( t , z ) l n (4 s in2~-~ - )  + K2(t,z) 

with 2n-periodic analytic functions K1 and K 2. After introducing bounded operators To, AI, 
A2, A3: C1'~[-0,2~] ~ C°'~[0,2rt] by 

1 f~ z - t  
(To$)(t) := ~ cot - - ~  $'(z) dz, 

f ;~ (4sin2 t 2 z ) (A1 ~b)(t) := Kl(t ,z) ln ~ ~k(z) dz, 

;? (A20)(t):= g2(t,z)O(z)dz, 

(A 3 ~1)(t):= a(t) O (t), 

and setting A := A~ + A2 + A3 we can rewrite the integral equation (2.7) in the short form 

To$ + A~, = f  (2.8) 

We note that all our function spaces on the interval [0, 2n] have to be understood as spaces of 
2rr-periodic functions. The operator To corresponds to the normal derivative of the double-layer 
potential for k = 0 and F the unit circle. It is also related to the bounded operator 
Ho : C°"[0, 2n] --, C°"[0, 2rt] with Hilbert kernel 

(Ho0)(t):= ~ g  i cot----~ + i 0(r) dz 

which satisfies Hg = I (cf. [6, p. 91]). From this it is obvious that the modified operator 
To:C t'~[0, 2~] ~ C°'~[0, 2~] defined by 

;? To~': = To0 + O(z)dz, 

has a bounded inverse ~o1 :  C°"[0, 2~] --, C t"[0, 2hi. This result can also be derived from the 
fact that for the trigonometric monomials urn(t):= e i"' we have 

T0u,.= -Imiu,. ,  m = 0 ,  +1,  + 2 , . . . .  (2.9) 



352 R. Kress/Journal of Computational and Applied Mathematics 61 (1995) 345-360 

Hence, since the operator A : C 1., [0, 27t ] --, C 0., [0, 2n ] can be seen to be compact (see Lemma 4.1), 
the inverse T o  1 may serve as an equivalent regularizer of (2.8). In particular, from the Riesz theory 
for compact operators we have that To + A :C 1,, [0, 2n] ~ C °'" [0, 2n] has a bounded inverse if 
and only if To + A is injective. 

3. The numerical method 

Our quadrature method is based on trigonometric interpolation. We choose n 6 N and an 
equidistant mesh by setting 

tj,)" j r  t, J = 0 , . . - , 2 n - 1 .  
n 

The interpolation problem with respect to the 2n-dimensional space T, of trigonometric poly- 
nomials of the form 

i n--1 
v(t) = a,. cos mt + y" b,. sin mt 

m = O  m = l  

and the nodal points t~"J,j = 0, ... ,2n - 1, is uniquely solvable. We denote by P. "C[0, 2hi ~ T. 
the corresponding interpolation operator. For our error analysis we will use the estimate 

In n 
]l P , f  - f l lp,~ <~ C nq_p+a_ ~ Ilfllq.a, (3.1) 

which is valid for all f 6  C q'a [0, 2n] for 0 ~< p ~< q and 0 < e ~< fl < 1 and some constant C depend- 
ing only on p, q, a and fl (cf. [16, p. 40; 17, p. 78]). By I1" lip., we denote the usual H61der norm. For 
the trigonometric interpolation of 2n-periodic analytic functions f we have a stronger error 
estimate of the form (cf. [6, p. 160]) 

II P . f - f  I1,, ~ ~< ce -"" (3.2) 

for some positive constants c and a depending onf. By 1[" lip, ~ we denote the norm on the space of 
p-times continuously differentiable functions (given by the sum of the maximum norms of the 
function and its pth derivative). 

We will use the following interpolatory quadrature rules: 

I f~" z - t  , 1 ; f  ~ z - t  , cot ~ f  (z) dz ~ ~ cot - - ~  (P . f )  (z) dz, (3.3) 

In 2 t - -  2" ~,~ 2 n  I~ ~ ( 4 s i n - - - ~ ) f ( z ) d z  ;o In(4  " 2 t - z '  sm ----~ ) ( P,f)(z) dz, (3.4) 
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that is, 

1 ~2~ "~ --  t , 2n-I  
~nnjo- c o t - - ~ f  (z) dz ~ E r)")(t)f(tJ")), 

j=O 

In 4sin 2 f(z) dz ~ E R¢")(t)f(tJ")), 
j=O 

where by using the explicit form of the trigonometric interpolation polynomial and elementary 
integrals (see (2.9)) the quadrature weights can be seen to be given by 

l n - 1  
TJ")(t) = n E 

m=l 
m cos m(t -- tJ ")) -- ½ cos n(t - (") tj ), 

R}")(t) = 
2n n~l  1 n 

- - t)"'). n m=l cosm(t--tJ")) ~ c o s n ( t  

In addition, we use the trapezoidal rule 

f(z) dz ~ (P. f ) (z )dz  n2"-1 = -  • f(t}")). (3.5) 
/1 j=O 

The approximation (3.3) can be considered as a modification of the quadrature rule for the singular 
integral operator with Hilbert kernel due to Wittich [19]. The logarithmic quadrature formula (3.4) 
was first used by Martensen [10] and Kussmaul [8]. 

We apply the quadrature rules (3.3)-(3.5) to the integral equation (2.7) and obtain the approxi- 
mating equation 

2n-1 { n "))} a(t)~.(t) 
Z ~.(tJ ")) T]")(t) + Rl")(t)Kl(t,t~ ")) + -K2(t , t}  + =f( t )  

j=O /q 

which we solve for ~. ~ 7,. Using the fact that 

To P. ~, = To ~, = P. To ~,, ~, ~ T,, (3.6) 

which follows from (2.9), we can write this in operator notation as 

To ~. + A , , .~ .  + A2,.~ . + A3~n = f  (3.7) 

with the numerical quadrature operators 

:= f2~  (4sln ---j--)(P.Kl(t, ')d/)(z)dz, (Al,.d/)(t) In • 2 t -  z 

:= (P.K2(t, ) O)(z) 



354 R. Kress /Journal of Computational and Applied Mathematics 61 (1995) 345-360 

that is, 

2n-1  

( A l , n  ~/)(t) = y '  
j = o  

R) ") (t) K 1 (t, (") (") tj )~h(tj ), 

2n-1  

(A2,.O)(t) u =~o Kz(t, (") = -  tj ) ~h(t}")).  
n j =  

In order to arrive at an approximating equation which can be reduced to solving a finite 
dimensional linear system we collocate (3.7) with the interpolation operator P, .  Hence, in view of 
(3.6), our approximation scheme finally consists in solving 

Tomb. + P . A , , . ¢ .  + PnA2.nl]ln -F P.  A3¢ .  = P . f  (3.8) 

for ~p. e C L ' [0 ,2n ] .  We note that due to (2.9) any solution to (3.8) automatically belongs to the 
trigonometric polynomial space T, .  Clearly, (3.8) is equivalent to the linear system 

2n-1  

E 
j=O 

o (.) K 1 (t(k "), (") n } O,(t~ ")) Ti~)-)i + " i k - j l  n tj ) + _  t," tHn) *(")~ 
• x 2 ~  k , ~j  I 

+ a(t(k"))~h.(t(k") ) =f(tk(")), k -- 0, 1 . . . .  ,2n -- 1, (3.9) 

which we have to solve for the nodal values ~O,(t(k ")) of ft, e T, ,  and where 

1 
2n sin 2 (t~")/2) ' j odd, 

T) ") := T) ")(0) = 0, j even, j 4: 0, 

n 
2 '  j = 0 ,  

n m=l/,?, / ~/~ 

4. Error and convergence analysis 

The following lemma, of course, is standard. However, we include its proof in our analysis since 
we need the explicit form of the dependence of the estimates on the kernel function (p. 

Lemma 4.1. Let ~o: • x ~ ~ C be a continuous function which is 2~-periodic with respect to both 
variables and continuously differentiable with respect to the first variable. Then for 

u (t) := In 4 sin 2 t__~z ~0(t, z) dr, 0 ~< t ~< 2n, 



sin ½ (z + s)[ 
sin ½ (r - s )  I 

we can estimate 
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we have that 

for all 0 < ~ < 1 and some constant y depending only on ~. 

P r o o f .  For the weakly singular logarithmic kernel we clearly have that 

with some constant Cl. In order to estimate the H61der semi-norm, we write 

u(tl) - u(t2) = v 1 '1- v 2 ,  

where 

f?( ) vt:= In 4sin 2 t ~ - z  2 { ~ ( t~ ,O-  e(t2,0}dT, 

tl -- "~) __ in (4 sin2 t2 v2:= ; :~  {ln(4sin 2 ~ 2 z ) } t p ( t 2 , z ) d z .  

By the mean value theorem we can estimate 

' v , l < ~ c t l t l - t 2 ' l ~ t l o ~  

for all t l , t2e[0,2n] .  For the second integral we set s :=½(t2-  t~) and may 
0 < s ~< ½n. Using periodicity we obtain 

Iv2[ ~< I [I rpll ®, 

where 

I := ~ In sin2Sin2½(z + s ) ½ ( z  - dz = 4 f~'ln / sinl(z + s ) [ ~  _ ~ dr. 

Since for 0 ~< z ~< 2s we have that 

~] Z + S  , 

f~s i sin½(z+s) f.2, n z + s ] f ~  n z + l dz 
In sin½(z-- dz~<Jo ln~ z - s  d z = s  ln~ z - 1  " 

355 

(4.1) 

(4.2) 

(4.3) 

assume that 
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From the inequality 

l + z  
In ~<~3z, 

1 - - z  
0 ~ z ~ ½ ,  

we deduce that 

I sin ½ (r + s) 
In 

sin ½(r -~ 

Hence 

= In 
1 + tan(½s) cot (½r) 
1 - tan (½s) cot (½r) 

~< ~ tan (½s) cot (½r), 2 s ~ r ~ n .  

f; Isin" +s'l 
, In sin ½ (r -- 

and consequently 

Iv21 < c2]q - t2l(l + I ln Itt - t2[ [)I] fPH ~ (4.4) 

for all t~,t2 e [0,2n]  and some constant c2. Now the statement follows by putting (4.2)-(4.4) 
together. []  

dr ~<~3tan(½s) cot(½r)dr = - ~ t a n ( ½ s ) l n s i n s  
8 

If we assume that ~0 is continuously differentiable with respect to both variables, then we can 
substitute s = r - t in order to establish that u is continuously differentiable with 

- ~ ( t ) =  In 4sin 2 .~ z) + Or dr, O <~ t <<. 2rt, 

Therefore, by induction, from Lemma 4.1 we can deduce the following corollary. 

Corollary 4.2. Under the assumptions o f  Lemma 4.1, let tp be p-times continuously differentiable with 
respect to both variables and (p + 1)-times continuously differentiable with respect to the first variable 
where p e N. Then we have that 

Ilullp,~ ~<~ IltPllp,® + (4.5) 
oo 

for  all 0 < o~ < 1 and some constant 7 depending only on p and ~. 

We recall A:= A~ + A2 + A3, abbreviate An:= AI , ,  + A2,n + A3 and establish the following 
convergence result. 

Theorem 4.3. Assume that the kernels KI  and K 2 both are analytic and 2re-periodic. Then the 
operator sequence PnAn:Ct'~[O, 2x] --* C°'~[0,2rc] is norm convergent with limit operator 
A: C1'~[0,2r~3 ~ C° '~[0 ,2x] for  all 0 < ~ < 1. 

Proof. Throughout  the proof, by c we denote a generic constant (depending on K1, K2, 
and fl) which may differ in each formula. An application of Lemma 4.1, with tp(t ,z)= 
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(e. Kl(t," )q/)(z) - K1 (t, z) ~O (z), yields 

357 

I I (AI, . -  Al)ql[Io,= ~< c max [(P.Kl(t, ')~J)(z)- Kl(t,z)$(z)l 
O~<t,t~<2n 

1 ( O K l ( t , ' )  ) OKl(t,z) . + c  max P. ~ (z) ~'(z) 
o <~ t , ,  <~ 2~ Ot Ot 

Inserting the error estimate (3.1) for the trigonometric interpolation, we obtain 

I n  n 
n1+~-# lifo II,,~ (4.6) 

for all 0 < fl ~< ~ < 1. Similarly, combining Corollary 4.2 and the estimate (3.1) we find 

In  n 
[ l (a l . ,  - Ai)¢111.= < c n-T~- a I1¢111.~ 

for all 0 < fl ~< • < 1. This, in particular, implies 

[Ia~,~#ll l .~cll¢l l l ,~,  n~f~. 

Using this uniform boundedness, we apply again the estimate (3.1) to obtain 

I I ( e ,  a l . ~  - a x . ~ ) C J l l o . ~  <~ c - -  
In n In n 

II a 1,. ¢ Ill.~ -< c II q/II ~.=. (4.7) 
n ?i 

Now from (4.6) and (4.7) and the triangle inequality we have 

II(P.AI,. - A1)~ IIo,. ~ c 
In  n 

I1~111.=. 
n 

By the same technique, this estimate can be seen to be valid also for the operator A2 with analytic 
kernel K2. Finally (3.1) implies 

In n In n 
It(P.Aa--Aa)~klIo,~<<.c II A3 q1[11,~ ~< c - -  II ~O II1,~. 

n n 

Therefore, we have that 

I n  n 
]I(P.A.-A)~klIo,~<.c II~b[Ix,~ (4.8) 

n 

for all ~ e C1'~[0,2n] and the proof is finished. [] 

We are now in a position to formulate our main convergence result. 
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Theorem 4.4. For sufficiently large n the approximating equation (3.8) has a unique solution ~k~ and 
for the unique solution ~ to the original equation (2.8) we have the error estimate 

II@, - @ II 1.~ ~ c (  II P , f - f l l o . ~  + II P,A.~b - A~b IIo,~) (4.9) 

for some constant C = C(oO and 0 < o~ < 1. 

Proof. Since To + A : C l'a[-0, 2n] ---, C°'~[0, 2n] has a bounded inverse and since by Theorem 4.3 
we have norm convergence of the approximating sequence P.A~:CI"~[O,2rt]---, C°'~[0,2rc] to 
A : C 1'~[0, 2~] ~ C°'~[0, 2rt], by standard convergence analysis through the Neumann series, for 
sufficiently large n the operators To + P.A.:CI'~[O,2r~] ~ C°'~[0,2r~] are invertible and the 
inverse operators are uniformly bounded. The error estimate follows by writing 

~.  -- ~ = (To + P . A . ) -  ' { ( P . f  - f )  + (A - P .A. )¢ /}  

and using the uniform boundedness of the inverse operators. [] 

The error estimate (4.9), in view of (3.1) and (4.8), illustrates that the term P , f - f i s  decisive for 
whether we have convergence. Note that this term reflects the approximation of the principal part 
To by P.  To. Thus our approximation of the perturbation A is chosen in a manner which does not 
affect the convergence order for the principal part. From (3.1) and (4.8) we obtain the error estimate 

In n 

n#-a  

for 0 < ct ~< fl < 1, i.e., convergence i f f e  C °'a [0,2rt] for fl > 0c. Using the analogue of (4.8) for 
higher-order HSlder norms, which can be obtained with the aid of Corollary 4.2, we obtain the 
estimates 

In n 

for q e [~ and 0 < ~ ~< fl < 1. In addition to these low-order estimates, we wish to point out that if 
the exact solution is analytic (and this is the case if the boundary and the boundary data are 
analytic), then from (3.2), (4.1) and (4.9) it can be derived that 

i,e., the error decreases exponentially. 

5. A numerical example 

For a numerical example, we consider the scattering of a plane wave u i by a sound-hard cylinder 
with a non-convex kite-shaped cross-section with boundary F illustrated in Fig. 1 and described by 
the parametric representation 

x(t) = (cos t + 0.65 cos 2t -- 0.65, 1.5sin t), 0 ~ t ~< 2r~. 
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Fig. 1. Kite-shaped domain for numerical example. 
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Table 1 
Numerical results 

n Reu~(d) Imu~(d) Reu~(-  d) lmu~( - d) 

k = 1 8 0 . 1 3 9 7 3 6 2 6  0.18093027 -1.11011577 -0.50681485 
16 0 . 1 5 1 5 8 5 0 7  0.19159181 -1.10228822 -0.50925214 
32 0 . 1 5 1 5 3 7 4 0  0.19153454 -1.10234229 -0.50918721 
64 0 . 1 5 1 5 3 7 4 0  0.19153454 - 1.10234230 -0.50918720 

k = 3 8 0 . 1 1 1 6 3 3 5 6  0.91056703 -1.67222931 -0.86694951 
16 -0.03641571 0.71129456 -1.63684382 -0.82343826 
32 -0.03646654 0.71122115 -1.63689151 -0.82335680 
64 -0.03646654 0.71122115 -1.63689151 -0.82335679 

k = 5  8 0 . 5 3 5 6 7 3 0 9  0.12509154 -1.92379981 -1.40068649 
16 -0.27473745 -0.29834046 -1.95374230 -1.27549747 
32 -0.28067233 0.29817977 -1.94749252 -1.27590706 
64 -0.28067233 0.29817977 -1.94749251 -1.27590706 

The incident wave is given by ui(x) = e i k d ' x  where d denotes a unit vector giving the direction of 

propagat ion.  
For  the scattered wave u s we have to solve an exterior Neumann  problem with boundary  values 

g = - dul/dv on F. The far-field pat tern u~ is defined by the asymptot ic  behavior  of the scattered 

wave 

uS(x)-x/~l u ® ( ~ ) + O  , Ixl--" oo, 

uniformly for all directions ~ := x / l x l  (see [3, 4]). F rom the asymptotics for the Hankel  function 
for large argument,  we see that  the far-field pat tern of the combined double- and single-layer 
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potent ia l  (1.5) is given by 

Uoo(X)- e-i~/4 f r  {k.~" n(y)  + t l } e - i k ~ r  q)(y)ds(y) .  (5.1) 

After solving the integral  equa t ion  (1.6) numerical ly  by the me t h o d  of this paper,  the integral (5.1) is 
eva lua ted  by the t rapezoidal  rule. Table  1 gives some approx imate  values for the far-field pa t tern  
u ~ ( d )  and  Uoo(- d) in the forward  direct ion d and  the backward  direct ion - d. The  direct ion d of 
the incident  wave is d = (1, 0) and,  as r ecommended  in [5], the coupl ing parameter  was chosen by 
r / =  k. Note  tha t  the fast convergence is clearly exhibited. 
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