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THE EXPONENTIAL ACCURACY OF FOURIER AND
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Abstract. It is shown that when differencing analytic functions using the pseudospectral Fourier or
Chebyshev methods, the error committed decays to zero at an exponential rate.
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I. Introduction. The pseudospectral differencing methods involve the exact
ditterentiation of interpolants which are based on different sets of selected points. Each
method is usually named after the base functions used to expand such interpolants.

We discuss the pseudospectral Fourier and Chebyshev differencing methods--the
two most extensively used among all of the above, see for example the survey of
Gottlieb, Hussaini and Orszag [5] and the references therein. This stems from the
possibility of implementing the FFT in these cases. One can efficiently travel between
the "physical" and "phase" spaces, making the (global) pseudospectral calculations
in these two cases almost as economical as the (local) finite ditterence ones. The
definitive advantage of the former lies, however, in their remarkable accuracy proper-
ties, which is the topic of this paper.

As is well known, the pseudospectral differencing of (sufficiently) smooth func-
tions, enjoys "infinite" order of accuracy. That is, measured w.r.t, the inverse number
of selected points, the error committed is bounded by any fixed polynomial order (see
for example Kreiss and Oliger [8] for the Fourier case, and a different detailed study
of Canuto and Quarteroni 1], which includes, among others, the Chebyshev case).

Here we show, that if the function under consideration is further assumed to be
analytic, then the asymptotic decay rate ofthe error with either the Fourier or Chebyshev
ditterencing is, in fact, exponential. This should be compared with the polynomial decay
rate obtained by finite difference/finite element differencing methods.

In 2 we begin discussing the Fourier differencing of smooth functions. Following
[8], we first derive the aliasing relation, which implies "infinite" order of accuracy in
this case. In 3, we show the exponential decay rate of the error, with Fourier
differencing of analytic functions. The Chebyshev differencing method is likewise
treated in 4. After putting the aliasing relation in an identical form to the one obtained
in the Fourier case, the various error estimates follow along the same lines.

Similar to our treatment of the stability question in [15, Part II], we emphasize
here the central role played by the aliasing relations, from which we derive all the
results below. Thanks to these aliasing relations, the error decay behavior is "essen-
tially" due to the corresponding decay of either the Fourier or Chebyshev coefficients;
an exponential decay of the latter is widely known in the analytic case. Also, by
considering the Fourier/Chebyshev coefficients, the above derivation may still offer
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2 EITAN TADMOR

an exponential decay rate of fractional order in nonanalytic, smooth cases (for example,
standard cut-off functions).

In closing, we would like to point out that the above results are intimately related
to Bernstein’s theorem, regarding the exponential convergence of best polynomial
approximations. Specifically, given an analytic function, Bernstein’s proof verifies the
exponential convergence of its truncated Chebyshev series expansion, see for example
[11, 6]. Using the Gauss-Chebyshev rule to compute that expansion’s coefficients,
we are then led to the Chebyshev interpolant; the further error inferred by such
discretization (which is exac.tly an aliasing error), is known to be also exponentially
small, see for example [3, p. 329]. In other words, we conclude that the above
Chebyshev interpolantmso-called near minimax polynomial--approximates a given
analytic function within an exponentially decaying error. In fact, the results below
indicate that given an analytic function, both the Fourier and Chebyshev interpolants
approximate the function and its derivatives, within an exponential accuracy. Indeed,
these results manifest themselves in the global error behaviour of pseudospectrally
solved PDE’s, see for example [5], [6], [13].

2. Fourier differencing of smooth functions. Let w(x) be a 2or-periodic function,
whose values, w w(x), are assumed known at the 2N equidistant grid points x uh,
h- r/N, ,-0, 1,.-., 2N-1. The (pseudospectral) Fourier differencing of such a
function, refers to differentiation of the trigonometric interpolant of these grid values.
One constructs the trigonometric interpolant

N 1 2N-1

(2.1) (x) (x; N) E" wp e ipx, wp E w e-iph,
p=-v 2N =o

and use its derivative

d (x) " ipp e ipxv

dx p=-N

to approximate the "true" value, dw/dx (x x,,).
In order to examine the error we commit by such an approximation, it is convenient

to work with Sobolev space Ws, defined for integral orders s,

{ II(2.2) W" Wg- w(x) Ilwll’- < oo
k=O L2[0, 2-rr]

and extended by interpolation for fractional orders. Thanks to Plancherel’s formula,
W is isometrically isomorphic to HL Assuming w(x) admits a formal Fourier
expansion

1 fo(2.3a) w(x)-- (p) e*, (p)=-. w() e-’

then we can equally work with H, s real, which consists of those functions w(x),
having a finite Sobolev norm of order s,

(2.3b) H= w(x) Ilwllr- 2

The following lemma relating the Fourier coefficients of w(x),

(2.4 (=-g s w(9 e-’e d;

(Double) primed summation indicates halving first (and last) terms.
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FOURIER AND CHEBYSHEV DIFFERENCING METHODS 3

with those of its trigonometric interpolant, (x; N),

1 2N-1

E w(x) e-q’’h -N<-_p<=N,(2.5) wp
2N =0

is at the heart of our discussion (see for example, Kreiss and Oliger [8]).
LEMMA 2.1 (Aliasing). Assume w(x) is in Hs, s >1/2. Then the following equality

holds"

(2.6) p= , (p+2kN), -N<-_p<- N.
k=

Verification of Lemma 2.1 consists of inserting the Fourier expansion (2.3a)
evaluated at x x into (2.5), interchanging summations and obtaining (2.6).

Equipped with the aliasing lemma, we now may turn to estimate the error between
w(x) and its equidistant interpolant if(x): rewriting

(2.7) w(x)=[ "+ " ](p) e’px,
IPl<-N Ipl>-N

and, with the help of (2.6),

(2.8) if(x) E" ’(P) epx +
IPl<-N ]’Y" (p + 2kN) e ’’x,

IPl<-N o

the difference w(x)-if(x) is readily verified to equal

(2.9) w(x)-(x)=- .," [ (p+2kN)]e’P’+ " (p) e ’px.
[pI<--N 1. Ipl>----N

The first summation on the right represents aliasing of the higher modes with the lower
ones, Ipl_-< N, while the second summation consists of the truncated higher mode,
Ipl >- N. A quantitative study of both terms gives us Lemma 2.2 (compare, for example,
Kreiss and Oliger [9], Pasciak [12]).

LEMMA 2.2 (Error estimate). Assume w(x) is in H, s >1/2. Then for any real tr,
0 <- cr <- s, we have

((2.10) IIw(x)-ff(x; N)lin= <- 1+2. 2 (2k-1)-2 llwlln
k=l

Proof Beginning with (2.9), then by definition

IIw(x)-(x; N)II=-- 2" (l+lpl)2 2 ,(p+2kN)
(2.11)

IPl_N kO

+ " (l+lPl)=lW(P)l=.
IplN

The Cauchy-Schwarz inequality implies
2

(p+2kN) (l+lp+2kNl)E.[k(p+2kN)i2. (l+lp+2kNI)-,
kO kO kO

with the second summation not exceeding a value of

(1 +lp+EkNI)-2N-. (2k- 1)-2, lp] N.
k0 k=l
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4 EITAN TADMOR

Inserted into (2.11), we find that the aliasing part of the error given in the first term
on the right is bounded by

2N-:" E 2k- 1)-:. E :’ E (1 +lp+2k[):l(p+
k= IPIN kO

2. 2 (2k-l)-2’" IIw[I 2

k=l

The truncation error, given in the second term on the right of (2.11), is equally found
to be bounded by

IplN

Added together, the last two estimates yield (2.10).
Remark 1. Obsee that requiring w(x) to have more than "one-half" bounded

derivative enables us to control the aliasing part ofthe error. Apa from that restriction,
there is an error decay in any Sobolev norm weaker than that of w(x), which is equally
due to aliasing and truncation errors.

Remark 2. The aliasing relation (2.5) for the 0th mode, p 0, implies that the
trapezoidal rule is highly accurate for the integration of smooth periodic functions
(Davis and Rabinowitz [3]). Indeed, the error committed in this case is solely due to
aliasing

1 2N 1
E" w(x)-. Jo w() d= E (2kS).

2N =o kO

This allows us to replace the H-norm, measuring the error on the left of (2.10), with
its more applicable discrete counterpa (Gottlieb et al. [5])

1
IIl(x- (x; g)lll ’ (x; N) integral.=o’=o x (x)- x
Returning to our original question, we find--choosing tr 1 in Lemma 2.1--that

the error in Fourier differencing does not exceed

(2.12) dW(x)_.x (x; N) =<Coast. Ilwll,.

for arbitrary real s, s > 1. The norm on the left refers, of course, to the H= L2 norm
of the error, with a uniform Constant 2 on the right. It can be replaced, in fact, by
any other reasonable (possibly discrete) norm; for example, Sobolev’s inequality
implies for the somewhat more applicative maximum norm

dw d (_) s-3/2 3
Max -x (x)-x (x; N) =< Coast. Ilwll,s s >-

0v_<2N-1 2

Consider now a sufficiently smooth 2r-periodic function w(x). Differencing such
a function by local methods, such as finite difference or finite element methods, leads
to an error bound of the type (2.12) with a finite, fixed2 degree, polynomial decay.
The latter is usually identified with the accuracy order of the differencing method. With
this terminology in mind, the (global) Fourier differencing method is thus shown to

That is, independent of N.
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FOURIER AND CHEBYSHEV DIFFERENCING METHODS 5

be "infinitely" order accurate. The discretization error decays faster than any fixed
degree polynomial rate, for example, 1 ], [2], [4]-[7], 14], 15]. It is worth emphasizing
that phrasing the error estimate (2.12) as "infinite" order of accuracy is limited on
both accounts:

1. Consider a sufficiently smooth function .w(x) in H, s >> 1. The error’s order of
magnitude for a given Fourier differencing of such functions may be difficult to calculate.
An a priori knowledge regarding the size of the factors w]]n, k_-< s, is required in
this case.

2. Assume w(x) is a C-function. One cannot detect the exact asymptotic decay
rate, according to the error estimate (2.12). Because of its factor dependence on the
power smwhen s increases so does w llus-one may not conclude, for example, an
exponential convergence rate simply by placing arbitrarily large powers s, since the
optimal s depends of course (usually in an unknown manner) on N.

3. Fourier differencing of analytic functions. In this section, we show that the
Fourier differencing of 27r-periodic analytic functions admits an exponentially decaying
error. Furthermore, in some cases, the error’s order of magnitude may be calculated
as well.

To this end, assume

(3.1a) -r/o < Im z <

to be the strip of analyticity where w(z) admits the absolutely convergent expansion

(3.1b) w(z) }(p) e ’pz, IIm z -<_ r/< r/o.

Denoting

(3.2) M(r/)= Max Iw(z)l,
Ilm z[= r

we may now state
THZOREM 3.1. Assume w(x) is 27r-periodic analytic, with analyticity strip of width

2,/0. Then for any , 0 < < o, we have

II (.(3.3) (x)-(x" N) 4M(n) ctgh(Nn) /
e2" 1

Proofi Making the change of variables, e, then v() w(z -i log ) admits
the power series expansion

(3.4) v() w(z =-i log )= E (P)P.
p=--

By the periodic analyticity of w(z) in the strip IIm zl< no, v() is found to be
single-valued analytic in the corresponding annulus e-’o< ff < e "o, whose Laurent
expansion is given in (3.4)

1 v()
d, e-’o< r < eo(3.5) (q) =2’ _=rr

To estimate the error of Fourier differencing in this case, we employ (2.11) with 1,
obtaining

2

(3.6) IIw(x)-(x;N)ll,N=" " E (p+2kN) + " (l+lpl)=l(P)l=-IPIN kO IpIN
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6 EITAN TADMOR

Using (3.5), we sum the aliased amplitudes

/(o o 27ri 1= 1)
v(;) d; ]+ ,+(,-21=,- 1)

r e > 1,

so that the first term on the right of (3.6) does not exceed a value of

ctgh Nq N2 e_2Nn.(3.7a) 4N2 M2(r/)" " e2"W<-4M2()
e2 1(e2Nn 1)2 IPl<-N

The truncation contribution to the error in the second term on the right of (3.6), does
not exceed

(3.7b) 4M2(r/)[ ’ (1-t-p2) e-2nP+ ’ (1-1-p2) e2nP]<=8 M2(rl) N2e-2Nn

p>-N p<--_-N e2n- 1

Adding the last two bounds yields (3.3).
Remark 3. According to the above derivation, the exponential decay of the overall

error is due to equal size contributions of the aliasing and truncation parts, both
admitting a loss of a factor of N. One can do better, however, by taking into account
higher derivatives bounds

k

Mk(n e2k’ E Max
j=0 Il=e

Indeed, by invoking the relation

1 I dv
q(q) =27r" cl=r - (’)’-q dr,

the truncation contribution in (3.6) is, in fact, found to be bounded by

2M12(r/)[ , e-2np4r ., e2nP] _<4MEl(r/) -2Nr/

pN p_--<- N e2n 1
e

Compared with the truncation estimate in (3.7b), we see that the loss of the N-factor
is regained here. The aliasing error can be upper bounded similarly.

Remark 4. Estimate (3.3) shows that the error-with Fourier ditterencing of an
analytic function w(x), decays exponentially w.r.t, its asymptotic dependence on N.
Furthermore, equipped with a bound on w(x) when moved into the complex plane,
one can estimate the size of the error in this case, using the somewhat more aesthetic
upper bound

(3.8) (x)-x (x; N)

Remark 5. The exponential convergence follows for derivatives higher than one.
With the usual loss of a factor of N for each derivative, we obtain

M(r/__..__.) N e_N,.(3.9) IIw(x)-(x’, N)II,--< Const
sinh

The preferable discrete estimates follow along the lines of an earlier remark, or
alternatively, using Sobolev inequality to implement L error estimates. Moreover, the

We assume N is sufficiently large, N> (e2n 1)-1.
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FOURIER AND CHEBYSHEV DIFFERENCING METHODS 7

loss of the polynomial factor N in these cases can be regained, compensated instead
by using bounds which involve M(r/), as previously argued in Remark 3.

4. Chelyshev differencing--the nOnleriotlie case. In the nonperiodic case, the
Chebyshev differencing is usually advocated, see for example [1], [2], [4]-[6], [10],
[13], [14]. Let w(x) be defined for -1-<_x-<_1, and assume its values w= w(x) are
known at the N / 1 gridpoints x cos (,h), h 7r/N, , 0, 1, , N. The (pseudo-
spectral) Chebyshev differencing of such a function refersto differentiation of the
polynomial interpolant of these gridvalues. One constructs the polynomial interpolant

N 2 N
y,"(4.1) WT(X) ff’r(X, N)= ," wpTp(x), Wp "- =op=O

in terms of Chebyshev polynomials Tp(x)= cos [p(cos- x)], and uses its derivative

d ,, dTp
p=O

to approximate the "true" value, dw/dx (x x). The latter summation can be translated
into standard cosine FFT-like summation using a single two-step recursion formula,
see [4]-[6]. Thus Chebyshev differencing admits a fast efficient implementation.

To measure the error in this case, one usually employs the appropriately weighted
Chebyshev norm

w (x)Ilwll = (l-x2)’/2 dx

and the corresponding weighted spaces under the W norm, s integral,

(4.2) W={w(x)
Chebyshev spaces Wr of fractional order s are suitably interpreted by interpolation.

We have found it more convenient, however, to work below within the spaces
H, s real. Assuming w(x) admits a formal Chebyshev expansion

(4.3) w(x) ,’ (p) Tp(x), k(p) =2. w() Tp()
d,

p=o "rr -1 (1 so2) 1/2

then, in complete analogy with (2.3b), we introduce

(4.4) w(x) Ilwll , = (l/p)=l(p)l
p=0

Unlike the Fourier case (endowed with the usual Euclidean weighting), Wr and H
are not equivalent unless s 0, in which case they are in fact isometrically isomorphic
by the Chebyshev transform

2
(4.5) Ilwll ,g Ilwll g.

Making use of the inverse inequalities of Canuto and Quarteroni 1], will enable us,
later on, to recover the Hr-estimates derived below, within the more standard
Wr-spaces. We begin with the .aliasing relation, which in this case reads (see for
example Gottlieb [4], Reyna [14]).
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8 EITAN TADMOR

LEMMA 4.1 (Aliasing). Assume w(x) is in Hr, s >1/2. Then the following equality
holds

(4.6) ffp= ff(p)+ [ff(-p+2kN)+ ff(p+2kN)], O<-p - N.
k=l

Verification of Lemma 4.1 consists of inserting the Chebyshev expansion (4.3)
evaluated at x x into (4.1), yielding

’ (ql _" ro(xr(x
2 ,, 2’ (q)Tq(x) Tp(x)=q=o =o

to calculate the inner summation we employ the identity 2Tq(x)Tq(x)=
Tp+q(X)+ p_ql(X), ending up with

p= 2’ (q) qp+qO" pO+ 2 q, 2kNp
q=0 k=l

and (4.6) follows.
Let us define T_p(x)= Tp(x) so that (-p)= (p). The Chebyshev expansion

(4.3) takes now the Fourier-like symmetric form

(4.7) w(x). (p)T(x)

with an aliasing formula identical to the one we had before in Lemma 2.1

(4.8) p= (p+2kN).
k=-m

Hence, we can equally conclude the corresponding error estimate, which we quote
from Lemma 2.2.

LEMMA 4.2 (Error estimate). Assume w(x) is in H, s >. en for any real
0 s, we have

(4.9) 1+2.
k=l

Setting 0 in (4.9) gives us, in view of (4.5)

(4.10) IIw(x)- ff(x; N)llg 2 1+2" 2 (2k- 1) -2 Ilwllu.
k=l

Using the inverse inequality 1, Lemma 2.1], one can "raise" the Sobolev norm on the
left of (4.10), obtaining (for details see Canuto and Quaeroni [1, Thm. 3.1], Maday
and Quaaeroni [10]).

COROLLARY 4.3 (Error estimate). Assume w(x) is in W, s >. enfor any real, 0 2 s, we have

(4.11) I(x)-(x; g)llConst. IIl"
Thus, each derivative infers a loss of N factor in this case, rather than the usual

factor N associated with the Fourier differencing.
Remark 6. According to Y. Maday (private communication), the factor depen-

dence on the right of (4.11) is factorial, Consts

D
ow

nl
oa

de
d 

01
/0

5/
18

 to
 1

31
.2

04
.2

54
.1

06
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



FOURIER AND CHEBYSHEV DIFFERENCING METHODS 9

We turn now to consider the case where w(x) is analytic in the interval [-1, 1].
To this end, we employ Bernstein’s regularity ellipse, Er, with foci +/-1 and with sum
of its semiaxis equals r, see for example [11, 6]. Denoting

(4.12) Mr(r/)-Max Iw z)l, - e",
Er

we may now state
THEOREM 4.4. Assume w(x) is analytic in [-1, 1], having a regularity ellipse whose

sum of its semiaxis equals ro e no > 1. Then for any rl, 0 < rl < rio, we have

[ ctgh (Nr/) 1/2

(4.13) IIW(X)--T(X; N)lln].<=8Mr(rl)\ -.e---_ ]
Ne-v’.

Proof The transformation, (st+ ’-1)/2= z, takes the regularity ellipse Er in the
z-plane, into the annulus rff < I1 < ro in the ’-plane. Hence, v(’) 2w(z (" + r-1)/2)
admits the power series expansion

2 (P)P, rff<l’l < ro e.(4.14) v(’) 2w
2 p=-

Indeed, upon setting " e i and recalling that (-p)= (p), the above expansion
clearly describes the real interval [-1, 1],

w(z cos 0)= ’ (p) cos (pO).
p=O

For the Laurent expansion given in (4.14), we then find

1 f v(’)
dsr, e-’o < r < e’(4.15) (q) 27r-- .Jll=r .q--7i

Comparing (4.15) and (3.5), we end up with the same Cauchy integral formulae for
the amplitudes in both the Fourier and Chebyshev expansions; coupled with the
identical aliasing relations, (4.13) follows along the lines of Theorem 3.1.

Remark 7. As before, the factor (ctgh (Nrl)/e2"- 1) 1/2 on the right of (4.13), can
be replaced by the more aesthetic bound of 1/sinh (r/), yielding

MT(rl) Ne-nn(4.16) w(/)- N)II. -< 8
sinh (r/’-------

Next, an exponential error estimate in terms of the Sobolev norm Wr can be
derived. With the loss of an additional factor of N in the spirit of an earlier remark,
we then find

COROLLARY 4.5. Assume w(x) is analytic in [-1, 1]. Then we have

MT(’o)
N2r e-’ O< r/<(4.17) IIw(xt- fir(x; N)II wT<-- Const sna (w)

Making use of the Sobolev inequality, for example, [10], implies in particular a

discrete maximum estimate of the form
COROLLARY 4.6. Assume w(x) is analytic in [-1, 1]. Then we have

(4.18) Max
0<_--N

dw d
(x.)--7- T(x; N)

MT(rl)
N5/2 e-n rl rio.N Const 0 <

sinh (r/)
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10 EITAN TADMOR

We conclude by noting that the growth of the polynomial factors in the last error
bounds can be decreased, increasing the derivative bound Mr(,/), accordingly.

Acknowledgment. I would like to acknowledge Y. Maday for helpful comments
concerning this work.
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