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Many application codes, such as � nite element structural analyses and computational � uid dynamics codes,
are capable of producing many sensitivity derivatives at a small fraction of the cost of the underlying analysis. A
simple variance reduction method is described that exploits such inexpensive sensitivity derivatives to increase the
accuracy of sampling methods. Five examples, including a � nite element structural analysis of an aircraft wing,
are provided that illustrate an order of magnitude improvement in accuracy for both Monte Carlo and strati� ed
sampling schemes.

I. Introduction

S AMPLING methods for evaluating moments and distributions
of random functions have been used extensively, but relatively

little attention has been paid to utilizing sensitivity derivatives of
the randomfunction to improve the ef� ciency of samplingmethods.
(A sensitivity derivative is the derivative of the dependent random
function with respect to one of the independent random variables.)

Recently, Cao et al.1 (CHZ) formulated a sampling method for
stochastic optimal control problems that exploits the sensitivity
derivatives. There appear to have been no previous attempts in the
engineering community to exploit derivative information in Monte
Carlo methods for uncertaintyanalysis.For example, this possibility
is not mentioned in the recent texts by Fishman2 and Liu.3 However,
the mathematical � nancecommunityhas recentlydevelopedrelated
methods.4;5

A variety of engineeringanalysesare capableof producingsensi-
tivity derivativesat a small fraction of the cost of the analysis itself.
This is certainly true of many applications of � nite element struc-
tural analysis.For example, data in Storaasli et al.6 (Table 1, p. 350)
indicate that for a relatively small � nite element structural model
[16,000 degrees of freedom (DOF)], a single derivative can be ob-
tained in 7% of the time for an analysis.Because this relative time is
inversely proportional to problem size, the relative cost of a deriva-
tive drops below 1% of the analysis time for 130,000 DOF. The
recent development of ef� cient adjoint solvers for computational-
� uid-dynamics (CFD) codes indicates that aerodynamic sensitivity
derivativescan be obtainedvery ef� ciently.As one example,we cite
the work of Carle et al.,7 who reported that they have obtained 88
derivatives for Euler CFD at the cost of 10 analyses. As another,
more dramatic example, we refer to the work of Sundaram et al.,8

who have obtained 400 derivatives at the cost of 10 analyses for
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viscous, turbulent CFD. Thus, there are important applications in
which derivative information, even for tens of parameters, can be
obtainedat less cost than an analysis.The challengeis to devise sam-
pling methods that exploit this additional inexpensive information
to reduce the overall computationalcost.

On their optimal controlproblemapplication,CHZ demonstrated
that, comparedwith conventionalMonte Carlo sampling,exploiting
the sensitivity derivativesproduced an order of magnitude increase
in the ef� ciency of the sampling method on a model problem with
one randomvariable.The presentpaper furnishesadditionalnumer-
ical support on and insight into the bene� ts of the use of sensitivity
derivatives.In particular,we demonstrate 1) that this improved ef� -
ciency is even greater when the baseline sampling scheme is strati-
� ed sampling;2) that improvedef� ciencyis realizedona moderately
complex, � nite element analysis of an aircraft wing structure; and
3) that the improved ef� ciency extends to problems with more than
one random variable. On the other hand, whereas CHZ’s work was
in the context of optimal control problems, our demonstrations are
con� ned to simply the estimation of � rst and second moments of
random functions.

The paper is organized as follows. In Sec. II, we summarize the
relevant formulation of sensitivity derivative-enhanced sampling
(SDES) methods from CHZ. In Sec. III we present the veri� ca-
tion of our Monte Carlo and strati� ed sampling procedures on an
analytical function of several variables. In Sec. IV, we demonstrate
SDES using strati� ed sampling on the Burgers equation problem
studied by CHZ, and in Sec. V we illustrate SDES on two standard
test cases from the Society of Automotive Engineers. Finally, in
Sec. V, we present results for an aircraft wing structure.

II. Sensitivity Derivative-Enhanced
Sampling Framework

Consider a real-valued function y.» /, where » is a real-valued
random variablewith probabilitydensity function ½.»/. We assume
that the sensitivity derivatives of y with respect to » are available.
Let J .y/ be a functional of y. The expected value of J .y/, denoted
by E .J /, is given by

E .J / D J [y.» /]½.»/ d» (1)

Let V .J / denote its variance:

V .J / D fJ [y.» /] ¡ E.J /g2½.»/ d» (2)
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We use N» to denote the mean (or expected) value of » . The most
straightforward way to compute the expected value of J is to use
a Monte Carlo method. The problem with the Monte Carlo method
is its slow convergence.It can easily take hundreds or thousandsof
samples to obtain satisfactory approximations to the moments.

In a Monte Carlo method, the approximation of the integral (1)
is given by

OJ MC ¼ 1
N

N

i D 1

J [y.Âi /] (3)

where Â1; Â2; : : : ; ÂN is a sequence of samples of » generated ac-
cording to the density function ½.»/. The convergence of Eq. (3)
is, of course, guaranteed by the large number theorem. But the ap-
proximation error in Eq. (3) is proportional to

p
[V .J /=N ]. One

naturally looks for ways to reduce varianceto improveconvergence.
The current effort exploits the information regarding the sensitivity
of the function J [y.» /] with respect to the stochastic parameter »
to achieve variance reduction.

Let J1.» / be the linear Taylor expansion of J at N» , that is,

J1.» / D J [y.N»/] C Jy[y. N»/]y» . N»/.» ¡ N»/ (4)

where y» is the sensitivity of y with respect to » . Notice that

fJ [y.» /] ¡ J1.» /g½.»/ d» D J [y.» /]½.»/ d» ¡ J [y. N»/]

This suggests the following sensitivity-derivative-enhanced Monte
Carlo approximation of E.J /:

OJ S DMC ¼ J [y.N»/] C 1
N

N

i D 1

fJ [y.Âi /] ¡ J1.Âi /g (5)

We emphasize that we are not performing sampling on the ap-
proximation (4), but rather that our sampling actually uses the full
analysis. Therefore our sampling procedure converges to the exact
result for the original problem and not to the exact result of an ap-
proximation to the originalproblem(as in the popular resort to sam-
pling responsesurface approximationsrather than sampling the full
analysis).

The variance of J [y.» /] ¡ J1.» / is given by

fJ [y.» /] ¡ J [y.» /] ¡ Jy [y. N»/] ¡ y» . N»/.» ¡ N»/g2½.»/ d» (6)

where J [y.» /] is the mean of J [y.» /]. In the following theorem, we
use the varianceof » to estimate the varianceof J ¡ J1 . Without loss
of generality, we assume that » is a scalar random variable. CHZ
provedthe followingresult,which is repeatedhere for completeness.

Let m D maxj.d=d»/J [y.» /]j and M D maxj.d2=d» 2/J [y.» /]j.
The following estimates hold:

V .J / · 2m2V .» / (7)

V .J ¡ J1/ · .M2=2/fV 2.» / C E[.» ¡ N»/4]g (8)

Proof:The proofof the � rst inequalityis straightforward.We only
provide a proof for the second inequality. By the Taylor remainder
formula there exists »1 such that

J [y.Á/] ¡ J [y. N»/] D Jy [y. N»/]y» . N»/.Á ¡ N»/

C 1

2

d2

d» 2
J [y.» /]j» D »1 .Á ¡ N»/2

Because N» is the expectation of » , we have that

J [y.» /] ¡ J [y. N»/] D 1

2

d2

d» 2
J [y.» /]j» D »1 .Á ¡ N»/2½.Á/ dÁ

Thus

jJ [y.» /] ¡ J [y. N»/]j ·
M

2
.Á ¡ N»/2½.Á/ dÁ D

M

2
V .» / (9)

Using the Taylor remainder formula, we get

jJ [y.» /] ¡ J [y. N»/] ¡ Jy [y. N»/]y» . N»/.» ¡ N»/j · .M=2/.» ¡ N»/2

Combining Eqs. (6), (9), and the preceding inequality yields

V .J ¡ J1/ D ..J [y.» /] ¡ J [y. N»/] ¡ Jy[y.N»/]y» . N»/.» ¡ N»/

¡ fJ [y.» /] ¡ J [y. N»/]g//2 d»

· 2 fJ [y.» /] ¡ J [y. N»/] ¡ Jy [y. N»/]y» . N»/.» ¡ N»/g2

£ ½.»/ d» C 2 fJ [y.» /] ¡ J [y. N»/]g2½.»/ d»

· 2
M2

4
.» ¡ N»/4½.»/ d» C

M 2

2
V 2.» /

D
M2

2
fV 2.» / C E[.» ¡ N»/4]g

This completes the proof. These results extend to functions of mul-
tiple random variables in obvious fashion.

The foregoing analysis indicates that the SDES method is effec-
tive when the variance of » is small. In the forthcoming examples,
we focus on the � rst and second moments of y. In the former case,

J1.» / D Ny C y» .N»/.» ¡ N»/

and in the latter case

J1.» / D Ny2 C 2 Nyy» .N»/.» ¡ N»/

III. Veri� cation and Evaluation
of Sampling Procedures

Two different sampling procedures are considered in this work.
One is the vanilla Monte Carlo method, given by Eq. (3). The other
is strati� ed sampling, which we describe in the case of one random
variable.(Because these are the � rst applicationsof this techniqueto
problemswith multiple randomvariables,we start with the classical
strati� ed sampling method rather than the more sophisticatedHam-
mersleystrati� ed samplingandLatinhypercubesamplingmethods.)
Let 8.»/ denote the cumulative distributionfunction of the random
variable » , that is,

8.»/ D
»

¡1
½.³ / d³ (10)

The function 8 is nondecreasing with range [0; 1]. The interval
[0; 1] is divided into S strata, assumed here for simplicity to be of
equal length:

[´s; ´s C 1]; s D 0; 1; : : : ; S ¡ 1 (11)

where

´s D s=S; s D 0; 1; : : : ; S (12)

In the standard strati� ed sampling method, for each s one chooses
NS random samples, Ã s

i ; i D 1; : : : ; NS , uniformly distributed in
[´s; ´s C 1], and computes the correspondingrandom samples in the
variable » by inverting the cumulative distribution function:

Â s
i D 8¡1 Ã s

i ; i D 1; : : : ; NS (13)
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This procedure assures that the Â s
i are distributed according to the

densityfunction½.»/. The expectedvalueof J is then approximated
by

OJ ¼ 1
SNS

S ¡ 1

s D 0

NS

i D 1

J y Â s
i (14)

For the SDES version of strati� ed sampling, one � rst computes the
contribution to Eq. (14) from each stratum by an application of
Eq. (5). In particular,

OJ ¼ .1=S/ QJ s.y/ (15)

where

QJ s .y/ D J [y.» s/] C 1
NS

NS

i D 1

J [y.Âi /] ¡ J s
1 .Âi / (16)

with

J s
1 .» / D J [y.» s/] C Jy [y.» s/]y» .» s/.» ¡ » s/ (17)

where » s is the mean value of » in the sth stratum, given by

» s D
» s C 1

» s »½.»/ d»

» s C 1

» s ½.»/ d»
(18)

where » s is computed from the ´s from Eq. (13). Note that the
SDES method makes more use of sensitivity information for strati-
� ed sampling than for the Monte Carlo method, that is, S sensitivity
derivatives are used in the former case and only one in the latter.
For d random variables the SDES strati� ed sampling method uses
Sd sets of sensitivity derivatives, whereas the SDES Monte Carlo
method still just uses a single set of sensitivityderivatives.(A set of
sensitivityderivativesconsists of the d derivativesof y with respect
to the d random variables.)

To verify our procedures and select performance measures for
Monte Carlo sampling, strati� ed sampling, and their sensitivity
derivative-enhancedvariants,we have conductedtests on the simple
function of d random variables:

y.»/ D
d

j D 1

» j (19)

We treat the d random variables as independent. In one test case
their multidimensional density function is the Gaussian

½.»/ D
d

j D 1

1
p

2¼¾
exp

¡.» j ¡ N» j /
2

2¾ 2
(20)

Here,

Ny D d; y2 D d2 C d¾ 2 (21)

The numerator in the formula (18) for the mean values of » in each
strata » s is evaluatedanalytically,and the denominator is computed
with the aid of an IMSL routine for the cumulative distribution
function for the standard normal distribution. We use »i D 1 and
¾i D 0:10 for all variables in this model problem example.

In the other test case the density function is the uniform distribu-
tion

½.»/ D 1 if »1; : : : ; »d 2 [0:5; 1:5]
0 otherwise (22)

for which

Ny D d; y2 D d2 C d=12 (23)

Our focus in this paper is on quantifying to what extent the
SDES method provides a better estimate than the baseline sam-
pling schemes. There are many possible measures of this improve-
ment. For N random samples the relative error of the Monte Carlo
method (3) is E MC D [ OJ MC ¡E.J /]=E .J /. Likewise, the relativeer-
ror of the sensitivityderivative-enhancedMonte Carlo method (5) is
E S D MC D [ OJ S DMC ¡ E.J /]=E.J /. These errors are themselves ran-
dom variables with mean 0. An examination of the distribution of
the individual results for 1000 sets of Monte Carlo estimates using
N D 1024 samples on the uniform distribution case, Fig. 1, is in-
structive. This � gure shows the distributionof the ratio R j between
the absolute values of the Monte Carlo (MC) error and the sensitiv-
ity derivative-enhancedMonte Carlo (SDMC) error for the j th set
of N D 1024 samples, that is,

R j D
E MC

j

E SD MC
j

(24)

Because the errors E MC
j and E SD MC

j are themselves random vari-
ables (albeit with some correlationbecause they are computed from
the same random sample), the ratio R j is also random. (Figure 1
indicates that the distribution of this ratio is closer to a log normal
than to a normal distribution.) Clearly, in the vast majority of the
cases the SDMC method produces a more accurate estimate than
the MC method. But there is a small probability, in this case about
0.4%, that the SDMC result will produce a worse estimate.

Table 1 lists the results of various error measures for the Monte
Carlo sampling on this problemas a functionof N , using M D 1000

Table 1 Various measures for the improvement of the SDES method
over regular MC sampling for the second moment of the linear test

problem with a Gaussian distribution

N Mean, R Median, R IL1 IL2

8 46.1 14.8 14.3 13.9
16 94.9 14.7 14.4 14.2
32 60.5 13.4 13.9 13.8
64 66.3 13.5 13.4 13.1
128 71.5 13.5 13.9 13.9
256 78.2 14.2 14.0 14.0
512 192 13.9 13.7 13.5
1,024 47.8 14.0 13.3 13.3
2,048 94.4 14.3 14.2 14.1
4,096 78.1 13.8 13.5 13.4
8,192 54.7 15.6 14.8 14.8
16,384 86.9 14.2 14.2 13.8

Fig. 1 Distribution of the ratio of Monte Carlo sampling error to the
SDES Monte Carlo sampling error on the linear test problem with a
Gaussian distribution.
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different sets of random samples. This table shows the mean and
median values of R j along with the ratios of the L1 and L2 values
of the errors, where these ratios are given by

IL1 D E MC
L1

E SD MC
L1

(25)

IL2 D E MC
L2

E SD MC
L2

(26)

where

E MC
L1

D 1
M

M

j D 1

E MC
j (27)

E MC
L2

D 1
M

M

j D 1

E MC
j

2
(28)

The mean valueof R has the largestvalueand the most variability
of these measures, driven by the large in� uence of random � uctua-
tions in the long tail illustrated in Fig. 1. The other three measures
produce nearly identical results. Henceforth, we will report just the
ratio IL2 of the L2 (or rms) relative errors. (The rms error is often
used in the rigorous numerical analysis of sampling methods.9;10 )
We shall refer to this quantity as the SDES improvementratio (SIR).

As expected for this linear test function, the SDES results for the
estimates of the � rst moments Ny are exact. Indeed, the numerical
results for all test cases demonstrate this to the full 64-bit precision
of the computations.(All computationsin thispaperwere performed
in 64-bit arithmetic.)

The effectivenessof the SDES approach on second moment esti-
mates for the linear model problemwith both Gaussian and uniform
distributions is documented in Figs. 2–5 and Table 2. The � gures
illustrate the rms relativeerrors for MC sampling and strati� ed sam-
pling with four strata (S D 4), along with their SDES versions on
estimatesof the secondmoment y2 for a varietyof samplesizesusing
M D 1000 sets of samples. Results for both Gaussian and uniform
distributions are reported, as are results for one random variable
and for four random variables. (Note that for the strati� ed sampling
cases, the number of samples in each stratum is NS D N=Sd .) The
exact values for E.J / are taken from Eqs. (21) and (23). In all cases

Table 2 SDES improvement ratios for second-moment estimates
of the model problem using N = 1024 and M = 1000

1 variable 4 variables

Distribution MC ratio S D 4 ratio MC ratio S D 4 ratio

Gaussian 13 22 28 61
Uniform 7 31 11 41

Fig. 2 Relative errors in the second-moment estimates for the model
problem for one random variable with a Gaussian distribution.

Fig. 3 Relative errors in the second-moment estimates for the model
problem for four random variables with Gaussian distributions.

Fig. 4 Relative errors in the second-moment estimates for the model
problem for one random variable with a uniform distribution.

Fig. 5 Relative errors in the second-moment estimates for the model
problem for four random variables with uniform distributions.

the various sampling methods exhibit the expected 1=
p

N error
decay.

Table 2 provides the SDES improvement ratios (SIRs) for the
N D 1024 cases shown in the � gures. The results here and in the
four � gures indicate that 1) the estimates provided by the SDES
method are typically one to two orders of magnitude more accurate
than those of the underlying sampling scheme, 2) the relative im-
provement is greater for the more sophisticated strati� ed sampling
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scheme than for the basic Monte Carlo method, and 3) the relative
improvement is greater for the larger number of random variables.
Furthermore, note that except for the four-variable, S D 4 case, the
cost of the sensitivity derivatives is a negligible component of the
total cost.

IV. Demonstration on a Solution
of Burgers Equation

CHZ’s main example was based on the generalized steady-state
Burgers equation11

@ f

@x
D @

@x
º

@y

@x
for x 2 ¡ 1

2
;

1

2

f .y/ D 1

2
y.1 ¡ y/

y ¡
1

2
D

1

2
1 C tanh

¡1

8º

y
1
2

D 1
2

1 C tanh
1
8º

(29)

This equation has the exact solution

y.xI º/ D 1
2 [1 C tanh.x=4º/] (30)

The parameter º (viscosity) is treated as a random variable. As a
result, the solution y D y.xI º/ of Burgers equation is also a random
function. Whereas CHZ considered this problem in the context of
optimal control, here we con� ne ourselves to just the estimation of
the � rst and second moments.

We again consider both a Gaussian distribution and a uniform
distribution. To conform to the cases from CHZ, the parameters
of this Gaussian are Nº D 2:0 and ¾ D 0:1, with the Gaussian cutoff
belowº D 0:1 and aboveº D 3:9. For this reasonwe usea quadrature
formula (Simpson’s rule with 100 intervals) to evaluate the integrals
in Eq. (18). The uniformdistributioncase has the probabilitydensity
function

½.»/ D 1 if » 2 [0:1; 0:3]
0 otherwise

(31)

We revisit the example here to illustrate the improvement that
the SDES method provides over the baseline strati� ed sampling
scheme. We include conventional MC for reference. Our � gure of
merit is the rms error (in x ) of the approximation of the second
moment of y.xI º/:

E[y2.x/] D y2.xI º/½.º/ dº

The exact value of the second moment, as well as the rms errors, are
evaluatedby numerical quadrature.(In our numerical examples,we
use Simpson’s rule with 100 intervalsto compute the exact valuesof
the second moments at each x and 40 intervals to compute the rms
errors over x .) Figures 6 and 7 illustrate the relative errors as a func-
tion of N for Monte Carlo and for strati� ed sampling with S D 4,
both with and without the SDES procedure.For these examples we
averaged over only M D 20 sets of samples because the integration
already reduced the statistical � uctuations.The results indicate that
1) the errors of all methods decay at the expected 1=

p
N rate; 2) the

strati� ed sampling methods afford a signi� cant improvement over
conventionalMonte Carlo; and 3) the SDES approach achieves an
order of magnitude reduction in the error. Table 3 documents fur-
ther the � nal point. It reports the SIRs, including cases of strati� ed
sampling with S D 8. The correspondingresults for the rms error in
the � rst moments (not shown here) give ratios that are about 10%
greater than those for the second moment.

Table 3 SDES improvement ratios for second-moment
estimates of the Burgers problem

Distribution MC ratio S D 4 ratio S D 8 ratio

Gaussian 12.4 21.1 22.5
Uniform 3.5 13.4 25.8

Fig. 6 Relative errors in the second-momentestimates for the Burgers
problem with a Gaussian distribution.

Fig. 7 Relative errors in the second-momentestimates for the Burgers
problem with a uniform distribution.

V. Two Society of Automotive Engineers Test Cases
The Probabilistics Methods Committee of the Society of Au-

tomotive Engineers (SAE) has selected 11 standard test cases for
probabilistic methods. Here we demonstrate the SDES method on
two of these. In SAE case 2a, the function is the same as the � rst test
case in this paper, but with 50 random variables. The random vari-
ables all have mean N»i D 1 and standard deviation ¾i D 0:10, just as
in our preceding example. However, because the SDES result is ex-
act for the � rst moment we report the results for the secondmoment.
Table 4 lists the rms relative errors computedwith M D 1000 sets of
samples of the MC and SDES simulations for the second moment
along with the SDES improvement factors. (Strati� ed sampling is
infeasible for this case, as there would need to be S50 strata.) As we
observed for the preceding results for this linear problem with one
and four variables,the SDES improvement factor increaseswith the
number of random variables.Figure 8 indicates the expected1=

p
N

error decay for both the MC and SDES simulations.
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Table 4 Relative errors and SDES improvement ratios
for SAE case 2a

N MC error SDES error Error ratio

1 2.6875e¡2 3.0866e¡4 99.21
2 1.9616e¡2 1.7233e¡4 98.35
4 1.4413e¡2 1.5221e¡4 98.66
8 9.9740e¡3 1.0026e¡4 104.04
16 6.8826e¡3 6.9306e¡5 100.27
32 5.2030e¡3 5.1790e¡5 93.08
64 3.2897e¡3 3.5829e¡5 95.45
128 2.4715e¡3 2.6167e¡5 100.43
256 1.8232e¡3 1.6549e¡5 101.82
512 1.2218e¡3 1.2238e¡5 95.64
1024 8.6903e¡4 9.1982e¡6 92.47
2048 6.2228e¡4 6.8266e¡6 91.16
4096 4.5351e¡4 4.8670e¡6 93.21

Fig. 8 Relative errors in the second-moment estimates for SAE case
2a.

In SAE case 6, the responsefunctionis the maximum radial stress
of a rotating disk computed from the equation

.¾r /max D [.3 C º/=8]f½=[.9:81/.39:37/]g[!.2¼=60/]2 r 2
0 ¡ r 2

i

(32)

Here º, ½ , !, r0, and ri are random variableswith the followingdis-
tributions:º D Poisson’s ratio N .¹ D 0:30, ¾ D 0:005/, ½ D density
(lb/in.3 ) N .¹ D 0:284,¾ D 0:002/, ! D rotorspeed(rpm)U (10,000,
11,000), r0 D outer radius (in.) N .¹ D 8; ¾ D 0:02/, and ri D inner
radius (in.) N .¹ D 2; ¾ D 0:01/. The results using N D 1024 with
M D 1000 sets of samples for both the � rst and second moments
are given here. For the � rst moment, the MC SIR is 68, and the
S D 4 SIR is 212. For the second moment, the MC SIR is 25,
and the S D 4 SIR is 85. The exact values for the � rst and sec-
ond moments are 22,020.4032 and 486,401,510.95934, respec-
tively. For this test problem, the SDES approach provides sev-
eral orders of magnitude improvement in sampling ef� ciency.
Figure 9 once again indicates the expected 1=

p
N error decay

for all the simulations and the signi� cant improvement of SDES
over MC.

VI. Aircraft Wing Structure Application
The � nal numerical example is for a structural analysis problem

using � nite element analysis.The speci� c problemis taken from the
work of Gumbert et al.12 (GHN). The trapezoidal-planform, semis-
pan wing is illustratedin Fig. 10. The wing is divided into six zones,
marked by the different shadings in the � gure, with zone 1 near the
wing root. The airfoil sections vary linearly from a NACA 0012
section at the root to a NACA 0008 section at the tip. The � nite

Fig. 9 Relative errors in the second-momentestimates for SAE case 6.

Fig. 10 Aircraft wing structural model.

element model consists of 583 nodes, with 2141 constant-straintri-
angle (CST) elements and 1110 truss elements. Linear elasticity is
assumed. We adopt the same grouping of structural thicknesses as
used by GHN. In the case of the CST elements, which are all that
are considered in the present work, there are three parameters for
each zone. Whereas, for GHN, these parameters were design vari-
ables, for us they are the random variables. These parameters are
multiplicative factors for the baseline values of the element thick-
nesses. For example, variable1 is the thicknessmultiple for the skin
elements in zone 1, variable 2 is the thickness multiple for the web
elementsof the ribs in zone1, andvariable3 is the thicknessmultiple
for theweb elementsof the spars in zone1, variable4 is the thickness
multiple for the skin elements in zone 2, etc. These scaling parame-
ters are denotedby » D .»1; : : : ; »d/, where d denotes the number of
parameters used in the particular case. The output functional of the
analysis y.» / is the compliance,which is the work done by the aero-
dynamic pressure to de� ect the structure. It is given by the integral
over the wing of the aerodynamicpressures times the structuraldis-
placements. The wing leading edge has a 9.46-deg sweep, a root of
20 ft, and a span of 60 ft. The trailing edge is unswept.The pressures
werebasedon a static aeroelasticcomputation(usingEulerCFD and
the � nite element structural analysis) of the � ow past the baseline
wing at a freestream Mach number of 0:80 and an angle of attack
of 1 deg. The baselinevalues of the � rst three parameters are 0.188,
0.0375, and 0.1200 in. The compliance is 213,285 lb-in. The � nite
elementcodeis describedbyHou et al.13 Itwas developedundercon-
tract to NASA Langley Research Center to enable basic researchon
simultaneous, coupled aerostructuraloptimization using � rst-order
sensitivity derivatives of both sizing and shape variables (see GHN
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Table 5 SDES improvement ratios for � rst- and
second-moment estimates of the aircraft wing
structure problem with one random variable

First moment Second moment

Variable MC S D 4 MC S D 4

1 42 160 35 140
2 8.0 25 8.0 25
3 4.3 14 3.5 11
4 44 170 38 150
5 10 36 10 36
6 4.3 14 3.5 11

Fig. 11 Compliance variation.

and their earlier papers for the optimizationapplications.) Gumbert
et al.14 have recently used this code for uncertainty analysis appli-
cations as well. A single structural analysis for this problem takes
roughly 1/5 s of CPU time.

Numerical examples for this problem are given for a uniform
distributionof the scaling parameters »i on [0:5; 1:5]. The exact so-
lution to the � rst and second moments is computed by numerical
quadrature. The estimated accuracy is at least 10 digits for the one
random variable cases and at least eight digits for the three random
variable cases. Table 5 gives the results for the SDES improvement
ratios for the � rst six structural variables (zones 1 and 2). The com-
putations were made for N D 256. Because the cost of the function
evaluation of this structures problem is much higher than for the
earlier examples, we only compute 100 sets of samples, that is,
M D 100.

The sensitivities of the compliance with respect to the � rst
three thicknesses at their mean values are ¡396,777, ¡1040 and
¡591,496 lb-in./in., respectively.The variation of the output (com-
pliance) with respect to the � rst three random (scaling) variables is
illustrated in Fig. 11. The percentage variations in the compliance
with respect to the � rst three variables are 3.5, 0.02, and 40%, re-
spectively.The relative impact of these variables upon the variation
of the compliance is readily understandable on physical grounds.
The effect of the aerodynamic load is felt primarily by the spars
(variable 3), secondarily by the skin (variable 1), and hardly at all
by the ribs (variable 2). The relatively small values of the SDES
improvement factors for the rib variables are as a result of the rel-
atively high accuracy of the Monte Carlo method when the output
function has little variation. Indeed the relative error for the Monte
Carlo approximationfor this case is alreadyof order10¡5 for N D 8,
whereas it is of order 10¡2 for the � rst variable and of order 10¡1

for the third variable.The compliance depends nearly linearly upon
the � rst variable (skin thickness) and the second variable (rib web
thickness), but has substantial curvature for the third variable (spar
web thickness). Hence, we should expect the greater improvement

Table 6 SDES improvement ratios for � rst- and
second-moment estimates of the aircraft wing

structure problem with three random variables

First moment Second moment

Variables MC S D 4 MC S D 4

1,4,7 49 160 40 140
2,5,8 9.3 32 9.3 32
3,6,9 4.6 15 3.4 12
1,2,3 3.9 17 3.2 13

producedby the SDES method for the � rst variable than for the third
variable.

Table6 illustratesthe samplingresultsfor caseswith threerandom
variables. The � rst three rows of results indicate that the improve-
ment ratios for the multivariable cases are comparable to those for
the single-variablecase, provided that the variables all behave sim-
ilarly. In contrast, the fourth row indicates that when the variables
have dramatically different impacts upon the output, then the multi-
variableresultsare comparableto thoseof the worst of the individual
variable results.

Some computationshave also been made for a Gaussian distribu-
tion of the random scaling variables (unit mean and standard devi-
ation of 0.20). The results are roughly the same as for the uniform
distribution.

We should note that there has been some promising work on
obtainingsecond-ordersensitivityderivativesef� ciently from � nite
element structural codes13 and CFD codes.15;16

VII. Conclusions
In conclusion,we have furnishednumericalresultsattestingto the

advantageof exploitingsensitivityderivativesin samplingschemes.
The examples range from analytic model problems to full � nite el-
ement structural analyses. For a � xed number of samples, there
is typically an order of magnitude reduction in the error achieved
by the sensitivity derivative-enhancedsampling (SDES) approach.
Equivalently,SDES computations require two orders of magnitude
fewer samples to achieve the same accuracy in the moments com-
pared with baseline Monte Carlo and strati� ed sampling schemes.
The improvement afforded by the SDES approach appears to in-
crease as the number of random variables increases. The overhead
for the extra sensitivityderivative calculations is less than 5%, even
for the structural analysis example.

The next steps in this project include extendingthe SDES method
to exploit the semi-analytic second-order sensitivity derivatives
available from some codes, evaluating the impact of SDES on Latin
hypercube sampling in order to handle more than a handful of ran-
dom variables and extending the application to the computation of
cumulative distribution functions.

In the presentwork, we have only made very minor use of deriva-
tive information and have obtained a signi� cant speed-up over two
conventional sampling methods. This suggests that more attention
should be devoted to exploiting relatively inexpensive sensitivity
derivativesin traditionalsampling methods.The long-termresearch
challengeis to make evenbetteruse of derivative information in oth-
erwise conventional sampling methods.
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