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Abstract. In this paper we study the dynamics of a vector-transmitted dis-
ease using two deterministic models. First, we look at time dependent pre-

vention and treatment efforts, where optimal control theory is applied. Using

analytical and numerical techniques, it is shown that there are cost effective
control efforts for treatment of hosts and prevention of host-vector contacts.

Then, we considered the autonomous counter part of the mode and we estab-
lished global stability results based on the reproductive number. The model is

applied to study the effects of prevention and treatment controls on a malaria

disease while keeping the implementation cost at a minimum. Numerical re-
sults indicate the effects of the two controls (prevention and treatment) in

lowering exposed and infected members of each of the populations. The results

also highlight the effects of some model parameters on the results.

1. Introduction. Vector-borne diseases have been and are among the leading
causes of death that remain challenges for many countries in the world, claim-
ing lives of millions of people every year. The health as well as the socioeconomic
impacts of emerging and re-emerging vector-borne diseases are significant. Thus,
they are among the major concerns for several health organizations including, the
World Health Organization, Center for Disease Control and National Health Insti-
tute [30, 31, 32]. Vectors are found in areas ranging from tropical to temperate
zones and at different landscapes, thus, the geographic distribution of vector-borne
diseases is vast and diverse.

Dengue fever, which is transmitted by Aedes aegypti mosquito, is common in
tropical climates including the southern parts of the United States in the Texas
and Florida regions [27]. Malaria is carried by female Anopheles mosquito, and it
is prevalent mainly in Africa and some parts of Asia [11, 12, 19, 25]. On the other
hand, West Nile virus, which is also abundant worldwide including in North America
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and in Canada [6], is transmitted by female cullux mosquito. Another vector-borne
disease which has a significant socioeconomic impact in the sub Saharan countries
of Africa is sleeping sickness. This disease is carried by tsetes flies among human
beings, horses and cattle [3, 4, 25].

A number of studies are carried out to combat vector-borne diseases, and in most
cases, they focus on vector-control. These studies range from field and laboratory
research [23] to mathematical models which are capable of predicting long term
dynamics [5, 6, 8, 12, 26]. Most vectors, such as, mosquitoes use favorable climatic
conditions to flourish [4, 25]. Thus, combating efforts of vector-borne diseases are
more effective and economical if they are in phase with climatic changes. To address
this, we consider an optimal control model with two controls (for treatment and
prevention) which are piecewise continuous on a finite interval.

Recently, some epidemiological models have used control theory, most of which
focus on HIV disease [2, 9, 13, 15, 18] and tuberculosis (TB) [16]. The optimal
control efforts are carried out to limit the spread of the disease, and in some cases,
to prevent the emergence of drug resistance. However, to the best of our knowledge,
optimal control theory has not been implemented to study vector-borne diseases.

In Section 2, we formulate the control model, where the host-vector interaction
and the flow of populations between compartments is described by a system of
ordinary differential equations. The mathematical foundation of the control model
and the derivation of optimal control pair of functions for the control system are
given using Pontrayagin’s Maximum Principle [24].

In Section 3, we study the asymptotic dynamics of a vector-borne disease using
the autonomous counter part of the optimal control model formulated in Section 2.
Analytical and numerical results of the autonomous model predict some conditions
which are vital to eradicate vector-borne diseases in the long run. Section 4 covers
several numerical simulations of the optimal control model. In particular, graphical
comparisons of the population sizes obtained using one or both controls are given
for the infected and the latent groups. Discussions of the results from the control
and the autonomous models are presented in Section 5. This discussion highlights
the importance of vector-control efforts as well as personal protection to eliminate
a vector-borne disease with minimal cost. The data used for numerical simulation
is estimated based on a malaria disease.

2. A Model for Optimal Control of Vector-Borne Diseases. We formulate
an optimal control model for a vector-borne disease in order to derive optimal
prevention and treatment strategies with minimal implementation cost. A term
is added for raising the fitness of treated and susceptible hosts at the end of the
intervention time period. The control functions, u1 and u2, represent time de-
pendent efforts of prevention and treatment, respectively and practiced on a time
interval [0, T ].. Known practices of prevention efforts include, surveillance, treating
vector-breading ground and reducing vector-host contacts. On the hand, treat-
ment efforts are carried out by screening patients, administering drug intake and
patients’ conditions (in hospital or as outpatient). We divide the host population
into four compartments using variables xi, i = 1, ..., 4 to describe the total number
of susceptible, latent, infected and treated groups, respectively. On the other hand,
yi, i = 1, 2, 3 describe the susceptible, latent and infectious groups in the vector
population, respectively. The latent group in both populations is infected, but it
does not transmit the disease. Members of the latent groups are at incubation
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stage, whereas the infected group is infectious in each case. We denote the total
population size of the host by N = Σ4

i=1xi and the vector by P = Σ3
i=1yi. The

transmission dynamics of the vector-borne disease is given by
dx1

dt
= δ1g(N)− βφy3x1(1− u1(t))

N
− µx1 + ψx4

dx2

dt
=

βφy3x1(1− u1(t))
N

− dx2 − µx2

dx3

dt
= dx2 − (r + r0u2(t))x3 − (α + µ)x3

dx4

dt
= (r + r0u2(t))x3 − (µ + ψ)x4

dy1

dt
= δ2h(P )− φθx3y1(1− u1(t))

N
− γy1

dy2

dt
=

φθx3y1(1− u1(t))
N

− γy2 − ky2

dy3

dt
= ky2 − γy3,





(1)

with initial conditions xi(0) ≥ 0, i = 1, · · · , 4 and yi(0) ≥ 0, i = 1, 2, 3. Note that
1 − u1(t) describes the failure rate of prevention efforts. The per capita recovery
rate is r0u2(t), where 0 ≤ r0 ≤ 1 is the proportion of effective treatment.

The rest of the functions and parameters in the model are defined as follows.
δ1, δ2 : per capita recruitment rate of the host and the vector populations, respec-
tively; density dependent factors for the recruitment rates are g(N) (for the host)
and h(P ) (for the vector) populations; β : the probability that susceptible hosts
become infected after contact with an infected vector; φ : the average number of
contact made to a host by a single vector per unit time. Thus, φP

N is the con-
tact rate of vectors per host in a unit time. As y3

P is the proportion of infectious
vectors, x1

φP
N

y3
P describes the total number of contacts between infectious vectors

and hosts per unit time. Finally, βx1
φP
N

y3
P is the infection rate of hosts. However,

the prevention effort u1(t) reduces the infection rate with a failure probability of
(1−u1(t)), which means if prevention controls are practiced, then the infection rate
is βx1

φP
N

y3
P (1− u1(t)) = βφy3x1(1−u1(t))

N .
The immunity of treated hosts is lost at a rate of ψ per unit time, making treated

individuals susceptible to the disease. Our model assumes that infectious individuals
at acute stage could die at a rate of α. The natural recovery rate r is assumed to be
larger than the disease induced death rate, d. Note that when there is no treatment,
1
r is the mean length that a host remains infectious before it naturally recovers to
join the recovered group, x4.

The probability that susceptible vectors get infection after contacting infectious
hosts is given by θ. Thus, since x3

N is the proportion of infectious hosts, assuming that
vectors get infected by contacting only infectious hosts, the term θφx3y1

N (1− u1(t))
describes the infection rate of vectors through contact with infectious hosts.

Since this model assumes that no genetic mutation or drug resistance of the dis-
ease takes place, the disease is caused by a single strain. Moreover, the community
is assumed to be closed when it comes to immigration, but the general exit terms;
µ in the host and γ in the vector, could include emigration rates as well as death
rates. Therefore, 1

µ and 1
γ are respectively, the duration of time a host and a vector

stay in the community until it dies or emigrates elsewhere. Further explanations of



4 KBENESH BLAYNEH, YANZHAO CAO AND HEE-DAE KWON

model parameters along with their estimates based on a malaria disease are given
in Section 4.

It is biologically meaningful to assume that the recruitment functions g(N) and
h(P ) satisfy conditions g(0) = 0, h(0) = 0, g(N) ≥ 0, and h(P ) ≥ 0. We further
assume that g and h remain bounded on their domains with upper bounds k0 and
v0, respectively. Density dependent factors such as competition for resources could
contribute to bounded recruitment functions. The following discussion could fur-
ther imply that under these circumstances, the host and vector populations remain
bounded. From (1) we have that

dN

dt
= δ1g(N)− αx3 − µN ≤ δ1g(N)− µN ≤ δ1k0 − µN. (2)

Clearly N ≤ δ1k0
µ for initial value N(0) ≤ δ1k0

µ . Similarly, it is possible to see that
if h(P ) ≤ v0, then

dP

dt
≤ δ2v0 − γP. (3)

Thus, for initial value P (0) ≤ δ2v0
γ , we have P ≤ δ2v0

γ . Let X = (x1, x2, x3, x4) and
Y = (y1, y2, y3). Based on the above discussion, we define a set Ω as

Ω = {(X, Y ) ∈ R4
+ ×R3

+, 0 ≤ N ≤ δ1k0

µ
, 0 ≤ P ≤ δ2v0

γ
}. (4)

In the remaining part of this paper we restrict our state variables to this set.

Theorem 2.1. Ω is positively invariant under system (1)

Proof. Clearly for H1 = −(βφ + µ),H2 = −(d + µ),H3 = −(r + r0 + α + µ) and
H4 = −(µ + ψ), it is possible to get dxi

dt ≥ Hixi for xi(0) ≥ 0. Similarly, for
G1 = −(θφ + γ), G2 = k + γ, G3 = −γ we have dyi

dt ≥ Giyi for yi(0) ≥ 0. Thus,
solutions with initial value in Ω remain nonnegative for all t ≥ 0. Moreover, as∑4

i=1 xi = N and
∑3

i=1 yi = P, we have, from (2) and (3) that N ≤ δ1k0
µ and

P ≤ δ2v0
γ . Therefore, Ω is positively invariant under system (1).

The analysis of the optimal control is carried out for time dependent N and
P. However, we approximate the reproduction terms δ1g(N) and δ2h(P ) by their
average values throughout this paper.

Together with the mathematical model described by equation (1), we consider
an optimal control problem with the objective (cost) functional given by

J(u1, u2) =
∫ T

0

(
A1x2(t) + A2x3(t) + B1u

2
1 + B2u

2
2

)
dt + l(x1(T ), x4(T )). (5)

A1 and A2 are weight constants of the latent and the infected group, respectively,
whereas, B1 and B2 are weight constants for prevention and treatment efforts,
respectively which regularize the optimal control. For technical purposes, it is as-
sumed that the cost of prevention and the side effects of treatment are given in
quadratic form in the cost function (5), that is, B1u

2
1 is the cost of prevention,

and B2u
2
2 is the cost of the treatment effort. The cost of treatment could come

from cost of drug, any cost associated with treating patients with other health
complications, surveillance and follow up of drug management and fighting emer-
gence of drug-resistant strains. Similarly, the cost of prevention is associated with
costs of vaccination, pesticide sprays, educating the public about personal protec-
tion and supply of basic needs (treated bed screen, for example). Furthermore,
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l(x1(T ), x4(T )) is the fitness of the susceptible and the treated group at the end of
the process as a result of the prevention and treatment efforts implemented.

We seek an optimal control pair (u∗1, u
∗
2) such that

J(u∗1, u
∗
2) = min{J(u1, u2) | (u1, u2) ∈ Γ}

subject to the system given by (1) and where the control set is

Γ = {(u1, u2)|ui(t) is piecewise continuous on[0, T ], ai ≤ ui(t) ≤ bi, i = 1, 2}. (6)

Here ai and bi, i = 1, 2 are constants in [0,1]. The basic framework of an optimal
control problem is to prove the existence of the optimal control and then characterize
the optimal control through the optimality system.

2.1. Existence of an Optimal Control. We note that the existence of an optimal
control pair can be proved by using results from Fleming and Rishel, [14]. It is
clear that the system of equations given by (1) is bounded from above by a linear
system. The boundedness of solutions of system (1) for a finite time interval is used
to prove the existence of an optimal control. We use the results on existence, [14,
Theorem 4.1, p68-69] in the special case of an optimal control for a free terminal
point problem, where the initial time and state along with the final time are fixed,
and there are no conditions on the final state. To use the theorem in [14], we first
check the following properties.

1. The set of controls and corresponding state variables is non-empty.
2. The control set Γ is convex and closed.
3. The right hand side of the state system is bounded by a linear function in the

state and control.
4. The integrand of the objective functional is convex on Γ and is bounded below

by c1(|u1|2 + |u2|2) β
2 − c2, where c1, c2 > 0 and β > 1.

5. The function l is continuous.
An existence result in Lukes ([21], Theorem 9.2.1) for the state system (1) with

bounded coefficients is used to give condition 1. The control set Γ is convex and
closed by definition. The right hand side of the state system (1) satisfies condition
3 as the state solutions are a priori bounded (see Theorem 2.1). The integrand in
the objective functional, A1x2(t) + A2x3(t) + B1u

2
1 + B2u

2
2, is clearly convex on Γ.

Moreover, there are c1, c2 > 0 and β > 1 satisfying

A1x2(t) + A2x3(t) + B1u
2
1 + B2u

2
2 ≥ c1(|u1|2 + |u2|2)

β
2 − c2,

because, the state variables are bounded. Finally under assumption 5, there exists
an optimal control pair (u∗1, u

∗
2) that minimizes the objective functional J(u1, u2).

Note that we expect the fitness function l(x1(T ), x4(T )) to be maximized while the
cost function J is minimum, for example, if we define the function l as follows;

l(x1(T ), x4(T )) = −Q1x1(T )−Q2x4(T ), Q1 ≥ 0, Q2 ≥ 0.

Then the function l is clearly continuous.

2.2. The Optimality System. With the existence of the optimal control pair
established, we now present the optimality system using a result from Lewis and
Syrmos [20]. We discuss the theorem that relates to the characterization of the
optimal control. The optimality system can be used to compute candidates for
optimal control pair. To do this, we begin by defining a Lagrangian (which is the
Hamiltonian augmented with penalty terms for the control constraints).
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Let Z = (X, Y ) ∈ Ω and U = (u1, u2) ∈ Γ, where X = (x1, x2, x3, x4) and
Y = (y1, y2, y3), where Ω is defined by (4) and Γ is defined by (6).

The Lagrangian for our problem consists of the integrand of the objective func-
tional and the inner product of the right hand sides of the state equations and the
adjoint variables Π = (λ1, λ2, λ3, λ4, λ5, λ6, λ7). Penalty multipliers, wij(t) ≥ 0, are
attached to the control constraints. We define the Lagrangian as follows.

L(Z, U,Π) = A1x2(t) + A2x3(t) + B1u
2
1 + B2u

2
2

+ λ1

(
δ1g(N)− βφy3x1(1− u1(t))

N
− µx1 + ψx4

)

+ λ2

(βφy3x1(1− u1(t))
N

− dx2 − µx2

)

+ λ3

(
dx2 − (r + r0u2(t))x3 − (α + µ)x3

)

+λ4

(
(r + r0u2(t))x3 − (µ + ψ)x4

)

+λ5

(
δ2h(P )− φθx3y1(1− u1(t))

N
− γy1

)

+ λ6

(φθx3y1(1− u1(t))
N

− γy2 − ky2

)

+λ7

(
ky2 − γy3

)
− w11(u1 − a1)− w12(b1 − u1)

−w21(u2 − a2)− w22(b2 − u2)





(7)

where wij(t) ≥ 0 are the penalty multipliers satisfying

w11(t)(u1(t)− a1) = w12(t)(b1 − u1(t)) = 0 at optimal control u∗1

and

w21(t)(u2(t)− a2) = w22(t)(b2 − u2(t)) = 0 at optimal control u∗2.

Theorem 2.2. Given an optimal control pair, (u∗1, u
∗
2), and solutions, x1, x2, x3,

x4, y1, y2, and y3 of the corresponding state system (1), there exist adjoint variables
Π satisfying
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λ̇1 = −
(
λ1[

−βφy3(1−u1)
N + βφy3x1(1−u1)

N2 − µ]

quad + λ2[
βφy3(1−u1)

N − βφy3x1(1−u1)
N2 ]

+λ5
φθx3y1(1−u1)

N2 − λ6
φθx3y1(1−u1)

N2

)
,

λ̇2 = −
(
A1 + λ1

βφy3x1(1−u1)
N2 − λ2[

βφy3x1(1−u1)
N2 + d + µ] + dλ3

+λ5
φθx3y1(1−u1)

N2 − λ6
φθx3y1(1−u1)

N2

)
,

λ̇3 = −
(
A2 + λ1

βφy3x1(1−u1)
N2 − λ2

βφy3x1(1−u1)
N2 − λ3(r + r0u2 + α + µ)

+λ4(r + r0u2) + λ5[−φθy1(1−u1)
N + φθx3y1(1−u1)

N2 ]
+λ6[

φθy1(1−u1)
N − φθx3y1(1−u1)

N2 ]
)
,

λ̇4 = −
(
λ1[

βφy3x1(1−u1)
N2 + ψ]− λ2

βφy3x1(1−u1)
N2

−(µ + ψ)λ4 + λ5
φθx3y1(1−u1)

N2 − λ6
φθx3y1(1−u1)

N2

)
,

λ̇5 = −
(
λ5[−φθx3(1−u1)

N − γ] + λ6
φθx3(1−u1)

N

)
,

λ̇6 = −
(
λ6(−γ − k) + kλ7

)
,

λ̇7 = −
(
λ1

−βφx1(1−u1)
N + λ2

βφx1(1−u1)
N − γλ7

)
,





(8)

with the terminal conditions,

λ1(T ) =
∂l

∂x1

∣∣∣
t=T

, λ4(T ) =
∂l

∂x4

∣∣∣
t=T

, λi(T ) = 0 for i = 2, 3, 5, 6, 7. (9)

Furthermore, u∗1 and u∗2 are represented by

u∗1 = max
(
a1,min

(
b1,

1
2B1

[βφ

N
y3x1(λ2 − λ1) +

φθ

N
x3y1(λ6 − λ5)

]))
,

u∗2 = max
(
a2,min

(
b2,

1
2B2

[
r0x3λ3 − r0x3λ4

]))
.

(10)

Proof. First of all, we differentiate the Lagrangian, L, with respect to states and
then the adjoint system can be written as

λ̇1 = − ∂L

∂x1
, λ̇2 = − ∂L

∂x2
, λ̇3 = − ∂L

∂x3
,

λ̇4 = − ∂L

∂x4
, λ̇5 = − ∂L

∂y1
, λ̇6 = − ∂L

∂y2
, λ̇7 = − ∂L

∂y3
.

The terminal conditions (9) of adjoint equations can is given by [20, pp.134]

∂l

∂Z
−Π = 0, at t = T.

To obtain the optimality conditions (10), we also differentiate the Lagrangian, L,
with respect to U = (u1, u2) and set it equal to zero.
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∂L

∂u1
= 2B1u1 + βφ

N y3x1λ1 − βφ
N y3x1λ2

+φθ
N x3y1λ5 − φθ

N x3y1λ6 − w11 + w12 = 0,

∂L

∂u2
= 2B2u2 − λ3x3r0 + λ4x3r0 − w21 + w22 = 0.

Solving for the optimal control, we obtain

u∗1 =
1

2B1

[βφ

N
y3x1(λ2 − λ1) +

φθ

N
x3y1(λ6 − λ5) + w11 − w12

]
.

To determine an explicit expression for the optimal control without w11 and w12, a
standard optimality technique is utilized. We consider the following three cases.

(i) On the set {t| a1 < u∗1(t) < b1}, we have w11(t) = w12(t) = 0. Hence the
optimal control is

u∗1 =
1

2B1

[βφ

N
y3x1(λ2 − λ1) +

φθ

N
x3y1(λ6 − λ5)

]
.

(ii) On the set {t|u∗1(t) = b1}, we have w11(t) = 0. Hence

b1 = u∗1 =
1

2B1

[βφ

N
y3x1(λ2 − λ1) +

φθ

N
(x3y1(λ6 − λ5)− w12

]
.

This implies that

1
2B1

[βφ

N
y3x1(λ2 − λ1) +

φθ

N
x3y1(λ6 − λ5)

]
≥ b1 since w12(t) ≥ 0.

(iii) On the set {t|u∗1(t) = a1}, we have w12(t) = 0. Hence

a1 = u∗1 =
1

2B1

[βφ

N
y3x1(λ2 − λ1) +

φθ

N
(x3y1(λ6 − λ5) + w11

]
.

This implies that

1
2B1

[βφ

N
y3x1(λ2 − λ1) +

φθ

N
x3y1(λ6 − λ5)

]
≤ a1 since w11(t) ≥ 0.

Combining these three cases, the optimal control u∗1 is characterized as

u∗1 = max
(
a1,min

(
b1,

1
2B1

[βφ

N
y3x1(λ2 − λ1) +

φθ

N
x3y1(λ6 − λ5)

]))
.

Using similar arguments, we also obtain the second optimal control function

u∗2 = max
(
a2,min

(
b2,

1
2B2

[
r0x3λ3 − r0x3λ4

]))
.

We point out that the optimality system consists of the state system (1) with
the initial conditions, Z(0), the adjoint (or costate) system (8) with the terminal
conditions (9), and the optimality condition (10). Any optimal control pair must
satisfy this optimality system. The graphical representations of the optimal control
functions u1 and u2 are given in Figures 1. Parameter values are estimated based
on a malaria disease as given in Table 1.
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3. The Autonomous Model. In this section we analyze the stability of the
disease-free equilibrium by first calculating a key threshold quantity vital in epi-
demiology, and then study the existence and stability of fixed points results.

Without considering the control functions in (1) (u1 = 0, u2 = 0), the au-
tonomous version of the model is given by

dx1

dt
= δ1g(N)− βφy3x1

N
− µx1 + ψx4

dx2

dt
=

βφy3x1

N
− dx2 − µx2

dx3

dt
= dx2 − (r + α + µ)x3

dx4

dt
= rx3 − (µ + ψ)x4

dy1

dt
= δ2h(P )− φθx3y1

N
− γy1

dy2

dt
=

φθx3y1

N
− γy2 − ky2

dy3

dt
= ky2 − γy3.





(11)

If we approximate the reproduction function δ1g(N) by a constant (possibly
average) value Λ, then in the event when the community is disease free (xi = 0, i 6=
1, yi = 0, i 6= 1), we have from the first four equations in (11)

Λ
µ + α

+ (N(0)− Λ
µ + α

)e−(µ+α)t ≤ N ≤ Λ
µ

+ (N(0)− Λ
µ

)e−µt. (12)

Thus, for a low level of disease induced death rate (α ≈ 0), the population could
eventually assume a steady-state value. Motivated by this, we consider a host
population which assumes a steady state value Λ

µ . Similarly, from the last three
equations of (11), we see that the vector population equilibrates to ∆

γ as well,
where δ2h(P ) is replaced by it average value ∆. We consider this value for the size
of the vector population.

For technical purposes, in this section, we assume that both populations are at
steady state. Clearly, the above system (11) has a unique disease-free equilibrium
given by

(x1, x2, x3, x4, y1, y2, y3) = (
Λ
µ

, 0, 0, 0,
∆
γ

, 0, 0). (13)

Using the next generation approach [7, 10], we estimate a threshold quantity
which is critical to the asymptotic stability of the disease-free equilibrium point.
To this end, we consider the equations for the infectious group in the host and the
vector populations, that is, the third and the seventh equations in (11), and let

h1 = dx2 − (r + α + µ)x3

h2 = ky2 − γy3.
(14)
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With X = (x1, x4, y1), Y = (x2, y2) and Z = (x3, y3), the model (11) can be split
into three equations as

dX

dt
= f1(X, Y, Z)

dY

dt
= f2(X, Y, Z)

dZ

dt
= f3(X, Y, Z),





(15)

where f3 = (h1, h2)T (T is transpose) is given by (14). Let U0 = (X∗, 0, 0) ∈
R7 denote the disease-free equilibrium of the system given by (11), where X∗ =
(Λ

µ , 0, ∆
γ ). The equation f2(X∗, Y, Z) = 0 implicitly defines Y = K(X∗, Z). Using

this, we get K(X∗, Z) =




βφy3

N(d+µ)(µ+
βφy3

N )
[δ1g(N) + ψrx3

µ+ψ ]
φθx3δ2h(P )

N(γ+k)(
φθx3

N +γ)


 . This in turn leads

to f3(X∗, Y, Z) = f3(X∗,K(X∗, Z), Z)=

(
Wy3

G+βφy3
(Λ + Ex3)− Fx3
Hx3

φθx3+J − γy3

)
. Let A =

DZf3(X∗,K(X∗, 0), 0), note that A = M − D where M =
(

0 WΛ
G

H
J 0

)
and

D =
(

r + α + µ 0
0 γ

)
. The constants used in the foregoing functions are: W =

dβφ
d+µ , E = ψr

µ+ψ , F = r + α + µ,G = µN, H = kφθ∆
γ+k , J = γN. Then, the maximum

eigenvalue, also known as the spectral radius of MD−1 is

R0 =

√
dkβθφ2P

γ(d + µ)(γ + k)(r + α + µ)N
, (16)

where N = Λ
µ and P = ∆

γ . This threshold quantity is the basic reproduction number
as defined in Diekmann and Heesterbreek [10]. To see this, note that the term kφβ

γ(γ+k)

describes the number of hosts that one vector infects (through contact) during the
lifetime it survives as infectious, when all hosts are susceptible. On the other hand,
the term dφθ

(d+µ)(r+α+µ) describes the number of vectors that are infected through
contact with one infectious host, while the host survives as infectious, assuming no
infection among vectors.

Lemma 3.1. The disease-free equilibrium for system (11) is locally asymptotically
stable (LAS) if R0 < 1 and unstable if R0 > 1.

Proof. The Jacobean of system (11) with x1 = N − (x2 + x3 + x4) evaluated at the
disease-free equilibrium point is


−d− µ 0 0 0 0 βφ
d −(r + α + µ) 0 0 0 0
0 r −(ψ + µ) 0 0 0
0 −φθ∆µ

γΛ 0 −γ 0 0
0 φθ∆µ

γΛ 0 0 −(γ + k) 0
0 0 0 0 k −γ




.

The third and the forth columns have diagonal entries. Therefore, the diagonal
entries −(ψ+µ) and −γ are two of the eigenvalues of the Jacobian. Thus, excluding
these columns and the corresponding rows, we calculate the remaining eigenvalues.
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These eigenvalues are the solutions of the characteristic equation of the reduced
matrix of dimension four which is given by

(x + γ)(x + d + µ)(x + r + α + µ)(x + γ + k)− dβφ2∆kθµ

γΛ
= 0. (17)

To simplify the notation, we let A1 = d + µ, A2 = γ + k, A3 = r + α + µ. This
reduces (16) to R2

0 = φ2dkθβ∆µ
Λγ2A1A2A3

and (3) to

x4 + B3x
3 + B2x

2 + B1x + B0 = 0, (18)

where
B3 = A1 + A3 + 2γ + k,

B2 = (A3 + A1)(2γ + k) + γA2 + A1A3,

B1 = γA3A2 + A1A3(2γ + k) + γA1A2,

B0 = γA1A2A3 − dφ2kθβ
∆µ

γΛ
.





(19)

The Routh-Hurwitz conditions [22], which usually have different forms are the
sufficient and necessary conditions on the coefficients of the polynomial (18). These
conditions ensure that all roots of the polynomial given by (18) have negative real
parts. For this polynomial, the Routh-Hurwitz conditions are: B2 > 0, B3 > 0, B0 >
0, B1 > 0, and

H1 = B3 > 0,H2 =
∣∣∣∣

B3 1
B1 B2

∣∣∣∣ > 0,H3 =

∣∣∣∣∣∣

B3 1 0
B1 B2 B3

0 B0 B1

∣∣∣∣∣∣
> 0,

H4 =

∣∣∣∣∣∣∣∣

B3 1 0 0
B1 B2 B3 1
0 B0 B1 B2

0 0 0 B0

∣∣∣∣∣∣∣∣
> 0.

Clearly H4 = B0H3. Since Ai > 0, i = 1, 2, 3 we have Bi > 0, i = 1, 2, 3. Moreover,
if R0 < 1, it follows that B0 > 0. Thus, it is enough to prove that H2 > 0 and
H3 > 0. Clearly H3 = B1(B3B2 −B1)−B0B

2
3 and H2 = B3B2 −B1. Using Maple,

it is easy to see that

H2 = B3B2 −B1 = A2
3(γ + A2 + A1)

+A2A3(2γ + A2 + 2A1) + γ2(A3 + A1 + A2)

+A2
1(γ + A2 + A3) + 2γA1(A3 + A2) + A2

2(A1 + γ)





(20)

which is positive. Again, using Maple we can also see that

H3 = B1(B3B2 −B1)−B0B
2
3

= (A3 + γ)(γ + A2)(A3 + A2)(A1 + γ)(A3 + A1)(A1 + A2)

+ φ2dkθβB2
3

∆µ

γΛ





(21)

which is clearly a positive quantity. Therefore, all of the eigenvalues of the Jacobian
matrix have negative real parts when R0 < 1.

However, R0 > 1 implies that B0 < 0, and since all of coefficients (B1, B2andB3

of the polynomial (18) are positive, not all roots of this polynomial can have negative
real parts. This means, when R0 > 1, the disease-free equilibrium point is unstable.
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Note that the result in Lemma 3.1 is local, that is, we could only conclude that
solutions with fairly small initial size in the invariant set Ω are attracted to the
disease-free equilibrium point. It is possible to further reduce the dimension of
the Jacobian in the proof of Lemma 3.1 by using y1 = P − (y2 + y3) and x1 =
N − (x2 + x3 + x4) without any technical difficulty.

Theorem 3.2. If R0 < 1, then the disease-free equilibrium point given by (13) is
globally asymptotically stable (GAS) on Ω.

Proof. We begin the proof by defining new variables and breaking the system given
by (11) into subsystems. With Z = (x2, x3, y2, y3) and X = (x1, x4, y1), this system
can be written as

dZ

dt
= G(X, Z)

dX

dt
= F (X, Z).





(22)

The two vector-valued functions G(X, Z) (dimension 4) and F (X, Z) (dimension 3)
are given by

G(X, Z) = (
βφy3x1

N
− (d + µ)x2, dx2 − (r + α + µ)x3,

φθx3y1

N
− (γ + k)y2, ky2 − γy3)T

F (X, Z) = (Λ− βφy3x1

N
− µx1 + ψx4, rx3 − (µ + ψ)x4,

∆− φθx3y1

N
− γy1)T ,





(23)

where T is transpose. Now consider the reduced system: dX
dt = F (X, 0)

dx1

dt
= Λ− µx1 + ψx4

dx4

dt
= −(µ + ψ)x4

dy1

dt
= ∆− γy1.





(24)

X∗ = (x∗1, x
∗
4, y

∗
1) = (Λ

µ , 0, ∆
γ ) is a GAS equilibrium point for the reduced system

dX
dt = F (X, 0). To see this, solve the second equation in (24) to obtain x4(t) =
x4(0)e−(µ+ψ)t; it approaches zero as t → ∞. Similarly from the last equation we
get y1(t) = ∆

γ + (y1(0) − ∆
γ )e−γt which approaches Λ

γ as t → ∞. Finally, the first
equation yields x1(t) = Λ

µ −x4(0)e−(µ+ψ)t +(x(0)+x4(0)− Λ
µ )e−µt → Λ

µ as t →∞.

This asymptotic dynamics is independent of initial conditions in Ω. Hence, the con-
vergence of solutions of (24) is global in Ω. Clearly G(X, Z) satisfies the following
two conditions given as H2 in [7, pp. 246] namely, (i). G(X, 0) = 0 and (ii).
G(X, Z) = AZ − Ĝ(X, Z), Ĝ(X, Z) ≥ 0 on Ω, where

A = DZG(X∗, 0) =




−(d + µ) 0 0 βφ
d −(r + α + µ) 0 0
0 φθ∆µ

γΛ −(γ + k) 0
0 0 k −γ


 and
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Ĝ(X, Z) =




βφy3(1− x1
N )

0
φθx3(∆µ

Λγ − y1
N )

0


 . Note that since the host and the vector popula-

tions assume a steady-state value (N = Λ
µ and P = ∆

γ ), the term φθx3(∆µ
Λγ − y1

N ) in

Ĝ(X, Z) is nonegative. Moreover, by Lemma 3.1 the disease-free equilibrium point
is LAS for R0 < 1. The global stability of the disease-free equilibrium point follows
from the theorem in [7, pp. 246].

Theorem 3.3. The autonomous system given by (11) has a unique endemic equi-
librium in Ω if R0 > 1.

Proof. It is easy to see that the steady-state equations for x1, x2, x3 and x4 along
with x1 = N − (x2 + x3 + x4) yield

βφy3

N
(N − (x2 +

dx2

r + α + µ
+

rdx2

(µ + ψ)(r + α + µ)
))− (d + µ)x2 = 0. (25)

Also, from the equilibrium equations for y1, y2 and y3, with y1 = P − (y2 + y3) we
get

φθdx2

N(r + α + µ)
(P − y2(

γ + k

γ
))− (γ + k)y2 = 0 and y3 =

ky2

γ
. (26)

To simplify notations, let B = φθ
N(r+α+µ) and C = γ+k

γ . Then, the first equation in
(26) yields

x2 =
Cγy2

dB(P − Cy2)
. (27)

Replacing y3 by its new value (see the second equation in (26)) transforms equation
(25) to

βφky2

Nγ
(N − x2A)− (d + µ)x2 = 0, where A = 1 +

d

r + α + µ
(1 +

r

µ + ψ
). (28)

It is easy to see that if P −Cy2 = 0, then y2 + y3 = P which further leads to y1 = 0
because, y1 + y2 + y3 = P. As a result of this, dy1

dt = 0 implies that h(P ) = 0, which
means that P = 0. But this is possible only if y2 = 0 = y3, which is not of interest
to us (there are vectors in the environment). Thus, y1 > 0 and P > y2 + y3 = Cy2

at steady-state.
Now as P − Cy2 > 0, we have x2 > 0 as long as y2 > 0, which we verify in

the following. From the simplifying notations given above and (27), equation (25),
which is also (28) gets its final form

βφky2

Nγ
[N − CγAy2

dB(P − Cy2)
]− (d + µ)

Cγy2

dB(P − Cy2)
= 0. (29)

A unique nonzero solution of this equation satisfies

y2 =
dφβkPBN − (d + µ)(γ + k)γN

CdBkPβφ
γ + βφkAC

=
(R2

0 − 1)(d + µ)(γ + k)γN
CdBkPβφ

γ + βφkAC
. (30)

Note that y2 > 0 iff Γ = dφ2βθkP
γN(r+α+µ)(d+µ)(γ+k) > 1, but R2

0 = Γ. Thus, a unique
endemic equilibrium point is possible only if R0 > 1.
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4. Numerical Results and Discussion. The model considered in this paper is
tested with data taken from a malaria disease of a single strain. This disease spreads
via a cross-infection between vertebrate hosts including human and invertebrate
vector which is the female anopheles mosquito. In the following two sub sections
we discuss simulation results for the optimal control and the autonomous models
for different parameters. The parameters used in solving the optimality system are
estimates of data from malaria [28]-[31] as summarized in Table 1 which is presented
at the end of this section.

4.1. Simulation of the Optimal Control Model. The optimality system is
a two-point boundary problem, because of the initial condition Z(0) of the state
system (1), and the terminal condition Π(T ), (9) of the adjoint (or costate) system
(8). We implemented a gradient method to solve the optimality system numerically.
After making an initial guess for the control functions, we first solved the initial
valued state system forward in time. Then, using the same initial guess for the
control functions, we solve the adjoint system with terminal conditions backward
in time. The controls are updated in each iteration using the optimality conditions
(10). The iterations continue until convergence is achieved.

We balance the host populations and control functions by choosing weight con-
stant values A1 = A2 = 1, B1 = B2 = 50, and Q1 = Q2 = 0.1 in the objective
functional (5), because, the magnitudes of the host populations and the control
functions are on different scales.

The numerical results are obtained for different values of φ, the average vector-
host contact rate, while keeping the remaining parameters unchanged in each simu-
lation. At first we search for two optimal control functions u1 and u2 for prevention
and treatment, respectively. These optimal control functions are designed in such a
way that they minimize the cost function given by (5). Among outcomes of this, we
find minimal latent and infectious host population levels. An increase in vector-host
contact rate (φ) is an indication that prevention effort has lower efficacy. There-
fore, in this case, to optimize the number of infectious and latent hosts, one has to
increase the treatment rate. This can be noticed from comparison of φ = 3 and
φ = 10 in Figure 1. After setting u2 = 0 (no treatment), we search for optimal
control function for prevention, u1. We repeat this process to search for optimal
treatment control function, u2, setting u1 = 0 (see Figure 3, φ = 3 and Figure 4,
φ = 10). The cost of treatment is higher for larger contact rates.

As it can be seen in Figure 5, if we have to use only one control, then, prevention
is more effective than treatment to diminish the size of latent and infectious hosts.
This highlights the effectiveness of preventive measures in controlling vector-borne
diseases. In perspective, one could conclude from the controls in Figures 1, 3 and
4 that we should give full prevention effort in the beginning of emergence of the
disease while giving full treatment effort in the middle of the time interval when
control efforts are practices. This means that prevention is more important in the
beginning of disease outbreak. On the other hand, treatment is more important
while the disease prevails.

As it is depicted in Figures 5, 6, 7 and 8, the latent and infectious popula-
tion levels obtained using both controls (prevention and treatment) are lower than
their counter parts which result from practicing only one control (prevention or
treatment). Our conclusion from this is: intervention practices that involve both
prevention and treatment controls yield a relatively better result.
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Another notable feature in Figures 7 and 8 is that when the average host-vector
contact rate (φ) is increased (preventive control has poor efficacy), then a combined
control effort yields a result that is not remarkably different from those obtained
using only one of the controls.

4.2. Simulation of the Autonomous Model. We performed simulations for
the autonomous model (11) for two cases; R0 < 1 and R0 > 1. R0 is the basic
reproduction number given by Equation (16). These simulations are performed
for different values of φ and initial conditions. Some of the model parameters are
considered based on a malaria disease (see Table 1). The simulation results are
given in Figures 9, 10 and 11.

It is clear from Lemma 3.1, that the disease is endemic for R0 > 1. Adding to
this, the numerical simulation shows that the equilibrium levels of infectious and
latent individuals in both populations increase when the contact rate, φ increases
(See Figure 10).

The disease-free equilibrium point is globally stable for R0 < 1 as it is given by
Theorem 3.2. However, as we can see in Figure 9, although the size of all infected
groups in each population dies out, its magnitude increases for a while with increased
contact rates before it goes to zero. Besides the increased vector-host contact rate
φ, increase in vector survival rate γ, is also a factor for the increased number of
infectious hosts (see Figure 12). A vector-borne disease can be eliminated through
a combination of effective vector control and personal protection from vectors. It
is also important to note that if the contact rate is kept low, then an increase in
infected (latent and infectious) vectors does not necessarily result in the spread of
the disease among hosts. This is shown by the phase plane portrait for two different
contact rates φ = 3 and φ = 10 in Figure 13.

Parameters for Malaria:
There are different types of malaria causing viruses; what we consider in the sim-
ulations of the two models are basically the average values which encompass many
of the features of the malaria disease including rate of infection, incubation period,
length of infectious period in the vector and the host populations. Although esti-
mates of some parameters are given in Table (1), here we give additional explanation
and description of some of the parameters as they are given from reports by the
Center for Disease Control and prevention and World Health Organization .
(1). The disease induced death rate α is allowed to vary. Most malaria parasites
are not highly fatal, with the exception of chloroquine-resistant P. falciparum, thus,
we keep α small.
(2). The average life expectancy of adult mosquito, 1

γ , is estimated based on the
range 15 to 20 days. For humans, the natural death rate is estimated based on
average life of 60 years in developing countries.
(3). It takes humans 10-30 days to develop malaria after a bite by infectious
mosquito occurs (the average period is 20 days) [28]. Therefore, a reasonable esti-
mate of the incubation rate d is 0.05 ≤ d ≤ 0.059.
(4). The recovery rate could vary based on the gametocyte, and it may take an
average of 30 days for the parasite to be cleared from bloodstream after treatment.
We estimate the maximum recovery rate 1

r+r0
to be about 1/30.

(5). It takes a female anopheles mosquito 10 to 26 days to develop the malaria
parasite in its salivary gland after blood meal from infectious host [29]. Thus, a
reasonable value for k could ranges from 1/26 to 1/10.
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parameter value
Λ = δ1g(N) 10
∆ = δ2h(P ) 50

β 0.1
θ 0.09
φ 3 or 10
µ 1 / (60 ∗ 365)
γ 1/15
ψ 1/(2 ∗ 365)
d 1/17
k 1/18
r 0.01
r0 0.04
α 0.001

Table 1. Estimated parametric values in the model for malaria
case. The rates are given per day

(6). After treatment, a person could take 1 to 20 years to be susceptible to the
disease, therefore, we consider ψ to assume a value from 1

356 to 1
(20)(356) per day.

In the simulation, we consider initial conditions x1(0) = 100, x2(0) = 20, x3(0) =
20, x4(0) = 10, y1(0) = 1000, y2(0) = 20, and y3(0) = 30. We bound prevention
and treatment efficacy by a1 = a2 = 0 and b1 = b2 = 1.

5. CONCLUSION. We wrap up our study by making some concluding remarks
about our findings. As mentioned in Section 2, time dependent intervention strate-
gies have been implemented to curtail a vector-borne disease on a finite time interval.
This model allows intervention activities to be intensified in appropriate time in-
tervals relevant to disease outbreak, which in most cases is in phase with climatic
variations. Since the control functions are allowed to be piecewise continuous, the
model incorporates possible scenarios including termination of activities in some
parts of the year. The model also predicts that the time dependent efforts prac-
ticed to contain the disease outbreak could be cost effective: the disease control
could be performed with minimal cost of prevention and treatment. Note that the
same model could be used to predict minimal environmental side effects, such as
emergence of drug resistant vectors, that result from preventive measures.

Prevention methods, which range from monitoring environmental changes to re-
duction of direct contact between vectors and hosts are among the best bets. While
addressing the seasonality of the vector-borne disease, the results of numerical sim-
ulations of our model support the hypothesis that among intervention techniques,
preventive practices are very effective in reducing the incidence of infectious hosts
and vectors.

Although control theory results in optimal strategies to curtail vector-borne dis-
eases, it is not capable of predicting the long term dynamics of the disease as a
whole. The long term prediction of the disease dynamics is carried out, as in most
epidemic studies, using the basic reproductive number of the autonomous counter
part of our model. This is addressed in Section 3 assuming that the total population
level of the vector and the host is constant. When disease-induced death rate is
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ignored in the host population, it is possible for the total population to eventually
equilibrate.

In any case, assuming that the disease-induced death rate is at a minimum level,
we considered the total populations of the host and the vector to be at steady
state. This is used to simplify the technical details while analyzing the dynamics
of the autonomous version, but no such assumption is made in the control model.
Exploring the impacts of the size of T , A1, A2, B1, B2, Q1, and Q2, along with the
upper and lower bounds of the control functions, that is, ai and bi, i = 1, 2 on the
optimal solution is part of our future research.
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Figure 1. Numerical simulations of optimal control functions
when the average number of host-vector contact per unit time
φ = 3 (top) and φ = 10 (bottom). Solid line(−): prevention;
dashed line(−−): treatment.
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Figure 2. The optimal value of the cost functional is calculated
using only one control function. The first graph is an optimal con-
trol function for prevention with no treatment. The second graph
is an optimal control function for treatment with no prevention.
In both case, the average number of host-vector contacts per unit
time is φ = 3.
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Figure 3. The optimal value of the cost functional is calculated
using only one control function. The first graph is an optimal con-
trol function for prevention with no treatment. The second graph
is an optimal control function for treatment with no prevention.
In both case, the average number of host-vector contacts per unit
time is φ = 3.
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Figure 4. The optimal value of the cost functional is calculated
using only one control function. The first graph is an optimal con-
trol function for prevention with no treatment. The second graph
is an optimal control function for treatment with no prevention.
In both cases, the average number of host-vector contact per unit
time is φ = 10.
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Figure 5. Optimal solutions for host when the average number of
contact made to a host by a single vector per unit time is φ = 3.
Solid line(−): optimal solution with two controls, dashed line(−−):
one optimal solution solved with prevention control, dashed and dot
line(−.): one optimal solution solved with treatment control, and
star line(∗): solution with no control. The legend in each window
is the same as the one given in the upper left window.
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Figure 6. Optimal solutions for the vector when the average num-
ber of contacts made to a host by a single vector per unit time is
φ = 3. Solid line(−): solved with two optimal controls, (−−):
solved with one optimal control for prevention, dashed and dot
line(−.): solved with one optimal control for treatment of hosts,
and (∗): solution with no control. The legend in each window is
the same as the one given in the upper left window.
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Figure 7. Optimal solutions for the host when the average vector-
host contact rate φ = 10. Solid line(−): solved with two optimal
controls, (−−): solved (−) with one optimal control for prevention,
(−.): optimal solution for treatment of hosts, and (∗): solution with
no control. The legend in each window is the same as the one given
in the upper left window.
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Figure 8. Optimal solutions for the vector when the average num-
ber of contact made to a host by a single vector per unit time is
10, i.e., φ = 10. Solid line(−): optimal solution, dashed line(−−):
optimal solution with prevention control; dashed and dot line(−.):
optimal solution with treatment control; and star line(∗): solution
with no control. The legend in each window is the same as the one
given in the upper left window.
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Figure 9. Solutions for Latent and Infectious host for φ = 1,
φ = 2, φ = 3, and φ = 4. In this case, R0 ' 0.1379, R0 ' 0.2758,
R0 ' 0.4136, and R0 ' 0.5515, respectively. The same legend is
used in each graphs.
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Figure 10. Solutions for Latent and Infectious host with φ = 8,
φ = 9, φ = 10, and φ = 11. In this case, R0 ' 1.1030, R0 ' 1.2409,
R0 ' 2.3788, and R0 ' 1.5167, respectively. So the disease free
equilibrium is unstable.
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Figure 11. Solutions for Infectious host(the first) and vec-
tor(the second) for three different initial values. In this
case, φ = 10 and R0 ' 1.3788. Solid line (−): X =
(100, 20, 20, 10), Y = (1000, 20, 30); dashed line (−−): X =
(10000, 600, 3000, 20000), Y = (300, 120, 130); dashed and dot
line(−.): X = (20000, 900, 6000, 35000), Y = (400, 320, 330).
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Figure 12. A 3D graph for the level of infectious hosts as a func-
tion of 1

γ (vector life span) and φ (vector-host contact rate) when
t = 8000.
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Figure 13. A phase plane portrait for the latent and infectious
host (x2+x3) against its counter part in the vector (y2+y3), where
φ = 10 and φ = 3.


