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Abstract. A general framework is proposed for what we call the sensitivity derivative Monte Carlo (SDMC)
solution of optimal control problems with a stochastic parameter. This method employs the residual in the first-
order Taylor series expansion of the cost functional in terms of the stochastic parameter rather than the cost
functional itself. A rigorous estimate is derived for the variance of the residual, and it is verified by numerical
experiments involving the generalized steady-state Burgers equation with a stochastic coefficient of viscosity.
Specifically, the numerical results show that for a given number of samples, the present method yields an order
of magnitude higher accuracy than a conventional Monte Carlo method. In other words, the proposed variance
reduction method based on sensitivity derivatives is shown to accelerate convergence of the Monte Carlo method.
As the sensitivity derivatives are computed only at the mean values of the relevant parameters, the related extra
cost of the proposed method is a fraction of the total time of the Monte Carlo method.
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1. Introduction

Optimal control problems of fluid flow have a wide range of important applications. Ex-
amples include aerodynamic design of cars, airplanes and jet engines. Computational fluid
dynamics (CFD) algorithms have achieved such a high level of maturity in terms of general-
ity and efficiency that it is now feasible to implement sophisticated flow control and design
optimization methods [2, 3, 8, 11]. In most optimal flow control and design optimization
studies to date, the input data and parameters are assumed to be deterministic. However, in
reality, due to modeling approximations, numerical errors and non-deterministic operating
conditions, input data and parameters are subject to uncertainties. For instance, the viscosity
of a fluid depends on temperature, but if temperature is not included as a state variable in a
CFD model, it is appropriate to assume that the viscosity is a random variable rather than a
precisely known constant. The uncertainty of the viscosity parameter affects the outcome of
the fluid flow and must be taken into account in the corresponding optimal control problems.



220 CAO, HUSSAINI AND ZANG

The interest in optimization under uncertainty has grown dramatically in the past few
years (see, e.g., [1, 4, 7]). Some of the early studies have been in the structural design
area [5, 12, 14]. The work of Huyse [9] is one of the first attempts at solving aerodynamic
optimization problems with uncertainty. In his study, the Mach number of the flow is
treated as a random variable and the basic Monte-Carlo method is used to compute the risk
function. The problem with the Monte-Carlo method is its slow convergence. It usually takes
hundreds, if not thousands, of samples (solutions of the state equation) to obtain satisfactory
approximation of the cost function, which often makes it prohibitively expensive. In Putko
et al. [13] the CFD outputs are approximated using the first-order and second-order Taylor
expansions around the means of the uncertain inputs. Although the approximation involves
sensitivity derivatives, expensive Monte Carlo simulation is avoided since all variables and
functions become deterministic after the approximation. Numerical examples in the paper
show that the method is effective when the variances of the input variables are small (also
see [10] for a similar approach). However, Taylor approximations of first or second order
are inappropriate for non-Gaussian, especially highly skewed, distributions, and are always
very inaccurate in the tails.

In this paper, we propose a Monte Carlo method with variance reduction based on the
sensitivity derivative of the state variable with respect to the stochastic parameter. This
method deals with the residual of the Taylor expansion instead of the function itself. The
convergence of the method is guaranteed by the convergence property of the Monte Carlo
method, and it is accelerated by the reduction of variance resulting from the Taylor approx-
imation. To demonstrate the efficiency of the SDMC method, we apply it to the optimal
control of the steady-state Burgers equation with viscosity as a random variable.

The paper is organized as follows. In Section 2, we present the formulation of optimal
control problems with uncertain parameters and the description of the sensitivity derivative
Monte Carlo method. Then in Section 3, we study the optimal boundary control problem of
the steady state Burgers equation with viscosity as a random variable. Finally, in Section 4,
we present the results of numerical experiments.

2. General framework
2.1. Optimal control with uncertain parameters

Consider an optimal control problem which involves the state equation
F(y,u,§)=0, (2.1)

where y is the state variable, u is the control variable and & is a random variable associated
with the uncertainty of given data and the uncertainty of system parameters. We assume
that y can be expressed as a function of &, that is, y = y(&). Also assume that J(y, u) is a
cost function which measures a quantity of practical interest. The expectation of J is given
by

J(u) = / J(y, u)p(&)dE, (2.2)
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where p is the probability density function (pdf) of £. The optimal control problem is then
to find a control & such that

J(it) = min J (u). (2.3)

A numerical solution of an optimal control problem involves three key tasks: (i) numerical
solution of the state Eq. (2.1), (ii)) Monte Carlo simulation to evaluate the cost function J
and its gradient VJ, and (iii) an optimization algorithm to find the minimizer of J.

Many mature CFD codes are available to perform task 1. Gradient and non-gradient
based optimization software can be easily found to perform task 3. An efficient Monte
Carlo method to evaluate the cost function is crucial for optimal control problems of fluid
flow as the solution of the state equation is usually computationally intensive. We propose to
improve the performance of a Monte Carlo method by exploiting the sensitivity derivative
of y with respect to &.

2.2.  Sensitivity derivative Monte Carlo method

For a random variable 5, we use E(n) and V() to denote its expectation and variance,
respectively. We will also use 7 to denote the expectation of 7. In a Monte Carlo method,
the approximation of the integral (2.2) is given by

. 1 g
Jwy~ 5 ; T(y(&), w), (24)
where &, &, ..., £y is a sequence of samples of &. The convergence of (2.4) is, of course,

guaranteed by the large number theorem. But the approximation error in (2.4) is proportional
to V(—Z,) . One naturally looks for ways to reduce variance to improve convergence. The current

effort exploits the information regarding the sensitivity of the state variable with respect to
the stochastic parameter to achieve variance reduction.
For a fixed u, Let J; (&, u) be the linear Taylor expansion of J at &, i.e.,

J1E ) = J(yE), w) + Iy ((E), wysE)E — &),

where y; the sensitivity of y with respect to £. Notice that

/ JOE), 1) — Jy(E, u)p(E) dE = / OE), )pE) de — J(y(E), ).

This suggests the following Monte Carlo approximation of J(y, u):

. 1 & _
J(y,u) = I Z(J(y(éi), u) — J1&i,u) + J(y(E), u). (2.5)
i=1
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The variance of J(y(€), u) — Ji(&, u) is given by
/ TOE). 1) — TOE 1) — (). u)yeB)E — E)P pl&) dE, 2.6)

where J(y(§), u) is the mean of J(y(§), u). In the following theorem, we use the variance
of £ to estimate the variance of J — J;. Without loss of generality, we assume that £ is a
scalar random variable.

Theorem 1. Let m = maxlafl—é.l(y(é), u)| and M = maxlj—;zj(y(é), u)|. The following
estimate holds

V(J)=mV()

and
M? 2 214
VI —J) = T(V E+EE-&)).

Proof: The proof of the first inequality is straightforward. We only provide a proof for
the second inequality. By the Taylor remainder formula there exists &; such that

2

- - - - 1d =
Sy, u) = J(y(&), u) = Jy(y(€), w)y:(§)(n — &) + Ed—ng(y(é)v 10)|e=g, (n — §)°.

Since £ is the expectation of £, we have that

2

- 1d z
J(E),u) = J(y(€), u) = / E@J(y(é), Wle—z(n — &)’ p(n)dn.
Thus

- - M - M

J(y(€),u) = J(y(E), w)| < > /(17 — &) p(mdn = EV(E)- 2.7)
Using the Tayor remainder formula, we get

- - - - M =

J(y(€), u) = J(y(&), u) — Jy(y(§), w)ys(§)(E —§)| = 7(5 —§)" (2.8)

Combining (2.6), (2.7) and (2.8) yields

V(i —J) = /(J(y(é), w) = J (&) w) = Iy (&), w)ye (E)E — &)
— (G, u) = J(yE), u)’dk
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=< 2/(J(y(§), u) — J(y(E), ) — Jy(y(E), w)ye(E)(E — §)) p(§) d&
+2/(J(y(5), ) — J(y(E), w)* p(&) dk

M2 - M2 5
52/7@—9 pE)dE + - V(E)

M? _
= 7<v2<s> +EE - &)"Y).

This completes the proof. ]

The theorem indicates that the sensitivity derivative method is effective when the variance
of & is small. The numerical experiments in Section 4 confirm this result.

3. Application to the generalized Burgers equation

Consider the generalized steady-state Burgers equation [10],

B 0 0
—f = —(v—y) + g(x), wherea <x <b 3.1)
0x ox \ dx

y(a) =u;, and y(b) = us, (3.2)

where f(y) = % y(1 — y). We treat the viscosity v as a random variable. As a result, the
solution y = y(v, u) of Burgers equation is also a random variable.

Assume that p(v) is the probability density function of v, and let u = (u;, u,). Define a
cost function

b
J(y,u) = / /(y(v) — y0)2p(v)dvdx + €(uf + u3) (3.3)

where yj is the given target state and € is a constant. Our goal is to find control & = (@i, ii5)
such that

J(§, i) = min J(y, u),

where y is the solution of (3.1)—(3.2) with boundary value 7.

3.1.  Numerical solution

To solve the Burgers equations (3.1)—(3.2) numerically, we use Newton’s method on a
uniform grid:

or
) _ ey,
(au)Au r(u ),

Au(”+1) — u(ﬂ) + Au('l)’



224 CAO, HUSSAINI AND ZANG

We use a central difference scheme to discretize (3.1).

3.2.  Sensitivity derivatives

In any gradient based optimization subroutine the sensitivity derivatives y; = 9,,y and
Y2 = 9y,y are needed. To obtain y; and y,, we differentiate (3.1)—(3.2) with respect to u;
and u,:

0y f'y1 = 0x(vdyy1), where a <x <b,

yl(a) = 1, yl(b) = O, (34)

and

O f'ys = 0:(v0;yy), where a < x < b,

(3.5)
y2(a) =0, y(b) =1
Once y is obtained through Newton’s iteration, a central difference scheme can also be used
to obtain numerical solutions for y; and y,.
In the Monte Carlo simulation, we need the sensitivity of y versus v, denoted by y, := 9, y.
We differentiate (3.1)—(3.2) with respect to v to obtain y,:

8xf/yv = 0x(VOryy) + Oxx Y,

(3.6)
w(@ =0, y,(b)=0.
3.3.  Evaluation of the cost function and its gradient
Without loss of generality, we assume that yg in (3.3) is zero. Let vy, vs, ..., vy be samples

of v generated by a random number generator. The SDMC evaluation of the first term of
the cost function is given by

b 1 N
/ (ﬁ D 0P = Y (3) = 2@y () — 1) + yz(,—,))dx, (3.7)
a i=1

The gradients of the cost function are computed by finite differences in our numerical
experiments.
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4. Results and conclusions
4.1. Evaluating the expectation and variance of the solution of Burgers equation

To demonstrate the effectiveness of SDMC, we evaluate the first and second statistical
moments, E(y) = [ y(v)p(v)dv and E(y*) = [ y*(v)p(v)dv by both the general Monte
Carlo method and SDMC, and compare them with the exact solution. To this end, we
address Egs. (3.1) and (3.2) witha = —0.5, b = 0.5, ¢ = 0, u; = (1 + tanh(5})) and
U = %(l —I—tanh(giv)). The exact solution is given by y(v) = %(1 +tanh(y;)). The experiment
is conducted for two different probability distributions of v: a uniform distribution on the
interval [0.1, 0.3] and a Gaussian distribution with expectation E(v) = 2 and standard
deviation S(v) = 0.1. Since the exact solution of the Burgers equation is known, both E(y)
and E(y?) can be evaluated with high accuracy by a quadrature formula, which enables
us to calculate the L? errors of the general Monte Carlo simulation and of SDMC for
comparison.

Tables 1 and 2 list the L? errors in the evaluation of E(y?) using the general Monte Carlo
method and SDMC respectively. Here, N denotes the number of samples or simulations,

Table 1. Errors and cpu times of Monte Carlo simulation: Uniform distribution.

N IEG?) = En(P) IEG?) — Esa()l CPU (MC) CPU (SDMC)
100 0.7521E-02 0.1442E-02 1.110 1.156
200 0.6347E-02 0.2059E-02 1.896 2.000
400 0.1991E-02 0.4305E-03 3.467 3.676
800 0.3559E-02 0.1104E-02 6.613 7.031
1600 0.4262E-02 0.8747E-03 12911 13.744
3200 0.2034E-02 0.1495E-03 25.533 27.195
6400 0.1818E-02 0.1446E-03 50.711 54.071
12800 0.7114E-03 0.9582E-04 101.213 108.00

Table 2. Errors of Monte Carlo simulation: Gaussian distribution.

N IEG?) = En()l IEG?) = Esa(y)
100 0.2577E-04 0.4010E-05
200 0.1500E-04 0.4498E-05
400 0.2450E-04 0.2912E-05
800 0.1009E-04 0.1188E-05
1600 0.1214E-04 0.8144E-06
3200 0.6341E-05 0.9881E-06
6400 0.7657E-05 0.6245E-06

12800 0.6650E-05 0.5476E-06
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Figure 1. The L error of the Monte Carlo approximations of E(y?): Uniform distribution of v 0: General Monte
Carlo; *: SDMC.

E,.( y2) represents the general Monte Carlo simulation result, E;( y2) represents the SDMC
result. The last two columns provide the cpu time for MC and SDMC methods respectively.
For a fixed number of samples, note that the extra cost of SDMC (associated with the
computation of sensitivity derivatives) is less than 7% of the cost of the MC method in
terms of cpu time. A simple linear regression analysis shows that the convergence rates
of both general Monte Carlo and SDMC are roughly O(1/+/N). These tables show that
the L? errors of SDMC are consistently smaller than the errors of general Monte Carlo
by an order of magnitude. These errors are plotted in figure 1 (general Monte Carlo) and
figure 2 (SDMC) as functions of N. The effectiveness of the variance reduction of SDMC
can clearly be seen.

In figure 3, we plot the results of SDMC simulation for the solution y of Burgers equa-
tion and its confidence intervals. The upper and lower limits of the confidence intervals
(shown as the upper and lower curves in figure 3) are defined to be E;(y) — 2S,4(y)
and E,,4(y) + 2S,4(y), respectively. Here S,,,; represents the approximation of the stan-
dard deviation of y using SDMC. In between the two curves lie the solutions of Burgers
equation from 40 samples . Here, we choose N = 200 for the confidence intervals and a
uniform distribution of v. Figure 4 shows the analogous results for the Gaussian distribution
of v.
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Figure 2. The L? error of the Monte Carlo approximations of E(y?): Gaussian distribution of v 0: General Monte
Carlo; *: SDMC.

4.2.  Optimal control problem

Uniform distribution of v. We solve the optimal control problem described in Section 3 with
g defined as g(x) = 2 + sin(x) in (3.1) and with the random variable v having a uniform
distribution on [0.1, 0.3]. Let u® = (49, u) be an initial guess. The numerical algorithm for
finding the minimizer of the objective function J involves 3 key steps.

Step I: For boundary values u" = (u7, u3), solve the state Eq. (3.1) to obtain y" and solve
the sensitivity Eqs. (3.4)—(3.6) to obtain the sensitivity of y" versus uy, u, and v.

Step 2: Evaluate the cost function J” = J(y", u") using the sensitivity derivative Monte
Carlo method.

Step 3: Call the optimization subroutine [6] with J” as input. This subroutine minimizes
general unconstrained objective function using finite difference gradients and secant
hessian approximations. The output of the subroutine is a new boundary value u"*! =
h(u”, J ™). The subroutine checks if #"*! is a satisfactory minimizer of J; if it is, it stops;
if not, it goes back to Step 1.

After several iterations, the optimization subroutine finds 0.4620 as the minimum of .J
atu = (0.3905, 0.1501).
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Figure 4. The confidence interval curves and the solutions y from simulations: Gaussian distribution of v.
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Since the control variable u# only has two components: #; and u,, we can evaluate and
graph the cost function and its contour (figure 5). The graph confirm that (i) the optimal
control problem with uncertainty state variable has a unique solution, and (ii) SDMC algo-
rithm indeed finds the global minimizer for the cost function J.

Gaussian distribution of v. This example is analogous to the previous one except that v
has a Gaussian distribution with E(v) = 2 and S(v) = 0.1. The optimization algorithm
finds the least cost J = 0.0073 at the boundary value i = (0.05189, 0.05948). Figure 6
shows the graph and the contour of the cost function. Again the minimizer found by our
optimization algorithm is consistent with the graph.

In conclusion, we have developed a sensitivity derivative based Monte Carlo method for
solving optimal control problems with uncertain parameters. Theoretical analysis proves its
effectiveness in variance reduction, and it is confirmed by the numerical results of a model
problem governed by the generalized steady-state Burgers equation. Encouraged by these
promising results, we are studying some shape optimization and boundary control problems
(under uncertain conditions) governed by the Euler and Navier-Stokes equations.

References

1. J. Borggaard, D. Pelletier, and E. Turgeon, “Parametric uncertainty analysis for thermal fluid calculations,”
Journal of Nonlinear Analysis: Series A Theory and Methods, vol. 47, no. 7, pp. 4533-4543, 2001.

2. Y. Cao and M.Y. Hussaini, “On convergence of optimal control problem to exact control problem for systems
governed by Navier-Stokes equations,” in Proceedings of ICNPPA-2000, 2001, vol. 1, pp. 117-126.

3. Y. Cao and D. Stanescu, “Shape optimization for noise radiation problems,” Comp. & Math. Appl., vol. 44,
no. 12, pp. 1539-1556, 2002.

4. B. DeVolder, J. Glimm, J. Grove, Y. Kang, Y. Lee, K. Pao, D. Sharp, and K. Ye, “Uncertainty quantification
for multiscale simulations,” J. Fluids Eng., vol. 124, pp. 2941, 2002.

5. X.Duand W. Chen, “Towards a better understanding of modeling feasibility robustness in engineering design,”
Amer. Soc. Mech. Eng., DAC-8565, Sept. 1999.

6. D. Gay, “Algorithm 611, subroutines for unconstrained minimization using a model/trust region approach,”
ACM Transactions on Mathematical Software, vol. 9, no. 4, pp. 503-524, 1983.

7. J. Glimm and H. Sharp, “Prediction and the quantification of uncertainty,” Physica D, vol. 133, pp. 152-170,
1999.

8. M. Gunzburger, “Sensitivites, adjoints, and flow optimization,” Inter. J. Num. Meth. Fluids., vol. 31, pp. 53-78,
1999.

9. L. Huyse, “Solving problems of optimization under uncertainty as statistical decision problem,” AIAA Paper,
2001-1519, 2001.

10. L. Huyse and R. Walters, “Random field solutions including boundary condition uncertainty for the steady
state generalized Burgers equation,” ICASE Report, 2001-35, 2001.

11. R. Joslin, M. Gunzburger, R. Nicolaides, G. Erlebacher, and M.Y. Hussaini, “A self contained, automated
methodology for optimal flow control validated for transition delay,” AIAA Journal, vol. 35, pp. 816-824,
1997.

12. A. Parkinson, C. Sorenson, and N. Pourhassan, “A general approach for robust design,” J. Mech. Design,
vol. 115, no. 1, pp. 74-80, 1993.

13. M. Putko, P. Newman, A. Taylor III, and L. Green, “Approach for uncertainty propagation and robust design
in CFD using sensitivity derivatives,” AIAA Paper, 2001-2528, 2001.

14. P. Thandedar and S. Kodiyalam, “Structural optimization using probabilistic constraints,” Structure Opt.,
vol. 4, pp. 236-240, 1991.



