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Abstract We study finite element methods for semilinear stochastic partial
differential equations. Error estimates are established. Numerical examples are
also presented to examine our theoretical results.
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1 Introduction

In recent years, it has become clear that many phenomena, both in nature and
in engineering, which are commonly described by systems of deterministic par-
tial differential equations, may be more fully modeled by systems of stochastic
partial differential equations (SPDEs) instead. However, the complexity of the
SPDE model is carried over to the solutions themselves, which are no longer
simple functions, but instead stochastic processes. This complexity of the solu-
tions is the reason that SPDEs are able to more fully capture the behavior of
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interesting phenomena; it also means that the corresponding numerical analysis
of the model will require new tools to model the systems, produce the solutions,
and analyze the information stored within the solutions.

Indeed the numerical analysis of SPDEs has become a highly active research
area in the past few years. SPDEs derived from fluid flow and other engineering
fields have been studied using Wiener chaos expansions in [4,7,14,17,21,23]. In
[3,15], the analysis based on the traditional finite element method was success-
fully used on SPDEs with random coefficients, using the tensor product between
the deterministic and random variable spaces. Numerical methods for SPDEs
with white noise and Brownian motion added to the forcing terms have also been
developed, analyzed, and tested by numerous authors [2,9,11,13,19,20,24,25],

In this paper, we study finite element methods for the following boundary
value problem of a semilinear stochastic elliptic partial differential equation
driven by an additive white noise:

{−�u(x)+ f (u(x)) = g(x)+ Ẇ(x), x ∈ �,
u(x) = 0, x ∈ ∂�,

(1.1)

where � is a bounded open set of R2, Ẇ(x) is a white noise, g ∈ L2(�) and f
is a continuous function on � satisfying certain regularity conditions given in
Sect. 2. The existence and uniqueness of the weak solution for (1.1) have been
established in [6] by converting the problem into the Hammerstein integral
equation using the Green’s function. The integral equation is also used as a tool
to derive the error estimates of the numerical approximations for problem (1.1)
(see [2,9,11]).

The difficulty in the error analysis of finite element methods and general
numerical approximations for a SPDE is the lack of regularity of its solution.
For instance, as shown in [2], the required regularity conditions are not satisfied
for problem (1.1) for the standard error estimates of finite element methods.
To overcome this difficulty, Allen, Novosel, and Zhang [2] and Du and Zhang
[9] consider replacing Ẇ with its piecewise constant approximation. Then the
solution of the resulting SPDE has the desired regularity for the error estimates
of finite element methods for � = (a, b).

The main challenge to carrying out an error analysis of the above finite ele-
ment approach for the SPDE (1.1) in higher dimensional spaces is the lack
of regularity of the Green’s function for the Laplacian operator. When the
domain � = (a, b), the Green’s function for the Laplacian operator is a simple
Lipschitz-continuous function; but this is not the case when � is a domain in
higher dimensional spaces. In this work we provide a Lipschitz-type regularity
estimate for the Green’s function of the Laplacian operator in the L2 norm. This
allows us to obtain an error estimate for the approximation of (1.1) with discret-
ized white noises. Notice that we allow� to be any convex domain in R2, not just
a rectangle. This extension to general domains is one of the major advantages
of finite element methods over other methods such as finite difference methods
and spectral methods.
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Nonlinearity in (1.1) is another challenge for the error analysis of finite ele-
ment methods. Because of the lack of regularity of the exact solution, we must
use the L2-norm to estimate the errors of the approximate solutions. For linear
problems, this can be done easily using a duality argument. Here we shall use
the Galerkin projection operator to resolve the difficulty.

The paper is organized as follows. In Sect. 2, we study the approximation
of (1.1) using discretized white noises. We shall establish an estimate for the
approximate solution in H2-norm and its error estimate in L2-norm. In Sect. 3,
we study a finite element method of the SPDE with discretized white noises and
obtain the L2 error estimate between the finite element solution and the exact
solution of (1.1). Finally, in Sect. 4, we present numerical simulation results
using the finite element method constructed in Sect. 3.

To conclude the introduction, we introduce the notations that will be used
throughout the paper. For an integer m, we use Hm(�) to denote the usual
Sobelev space whose norm is denoted by ‖ · ‖m. When m = 0, H0(�) shall
be denoted by L2(�), the space of square integrable functions on �. Its inner
product and norm are denoted by (·, ·) and ‖ ·‖, respectively. We also use H1

0(�)

for the subsapce of H1(�) whose elements vanish on the boundary of �.

2 The approximate problem

In this section, we first introduce the approximate problem for (1.1) by replac-
ing the white noise Ẇ with its piecewise constant approximation Ẇh. Then we
establish the regularity of the solution of the approximate problem and its error
estimates. Without loss of generality, we shall assume that f (0) = 0. Otherwise,
we just replace f by f − f (0) and g by g − f (0). For the simplicity of presentation
we will also assume that � is a convex polygonal domain.

Let {Th} be a family of triangulations of � (see [5] for the requirements on
{Th}), where h ∈ (0, 1) is the meshsize. We assume the family is quasiuniform,
i.e., there exist positive constants ρ1 and ρ2 such that

ρ1h ≤ Rinr
T < Rcir

T ≤ ρ2h, ∀ T ∈ Th, ∀ 0 < h < 1, (2.1)

where Rinr
T and Rcir

T are the inradius and the circumradius of T. Write

ξT = 1√|T|
∫
T

1 dW(x)

for each triangle T ∈ Th, where |T| denotes the area of T. It is well-known that
{ξT}T∈Th is a family of independent and identically distributed normal random
variables with mean 0 and variance 1 (see [22]). Then the piecewise constant
approximation to Ẇ(x) is given by

Ẇh(x) =
∑

T∈Th

|T|− 1
2 ξTχT(x), (2.2)
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where χT is the characteristic function of T. It is apparent that Ẇh ∈ L2(�)

almost surely. However, we have the following estimate which shows that ‖Ẇh‖
is unbounded as h → 0.

Lemma 1 There exist positive constants C1 and C2 independent of h such that

C1h−2 ≤ E
(∥∥Ẇh

∥∥2
)

≤ C2h−2. (2.3)

Proof It is easy to see that

E
(∥∥Ẇh

∥∥2
)

=
∑

T∈Th

1 =
∑

T∈Th

|T| 1
|T| .

By (2.1), 4πρ2
1 h2 ≤ |T| ≤ 4πρ2

2 h2 for all T ∈ {Th}. Thus, we have

E
(∥∥Ẇh

∥∥2
)

≥ 1

4πρ2
2

h−2
∑

T∈Th

|T| = |�|
4πρ2

4

h−2,

E
(∥∥Ẇh

∥∥2
)

≤ 1

4πρ2
1

h−2
∑

T∈Th

|T| = |�|
4πρ2

1

h−2.

Hence, (2.3) holds with C1 = |�|
4πρ2

2
, C2 = |�|

4πρ2
1

. �	

Replacing Ẇ by Ẇh in (1.1), we have the following approximation problem:

{−�uh(x)+ f (uh(x)) = g(x)+ Ẇh(x), x ∈ �,
uh = 0, x ∈ ∂�.

(2.4)

Its variational form is: find uh ∈ H1
0(�) such that

a(uh, v) = (Fh, v), for all v ∈ H1
0(�), (2.5)

where Fh = g + Ẇh, and

a(φ,ψ) = (∇φ, ∇ψ)+ (f (φ),ψ).

In the remaining of this section, we first show that (2.5) has a unique solution
uh in H1

0(�) ∩ H2(�) and then establish an estimate for the error u − uh. To
these ends, we shall assume that f satisfies the following conditions:

(A1) There is a constant α < γ such that

(f (s)− f (t))(s − t) ≥ −α|s − t|2, ∀ s, t ∈ R.
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(A2) There are positive constants β1 and β2 such that

|f (s)− f (t)| ≤ β1 + β2|s − t|, ∀ s, t ∈ R.

Here γ is the positive constant in the Poincaré’s inequality (see [1][10]):

‖∇v‖2 ≥ γ ‖v‖2, ∀v ∈ H1
0(�). (2.6)

These two conditions can be satisfied when f is a sum of a non-decreasing
bounded function and a Lipschitz continuous function with the Lipschitz con-
stant less than γ .

Theorem 1 Under assumptions (A1) and (A2), the variational problem (2.5) has
a unique solution in H1

0(�) ∩ H2(�) almost surely and

E
(
‖uh‖2

2

)
≤ C2h−2, (2.7)

where ‖ · ‖2 denotes the norm of H2(�), C2 is a positive constant independent of
h.

Proof The existence of a unique solution uh ∈ H1
0(�) follows from Proposition

2.9 of [26]. By condition (A1) and the Poincaré’s inequality (2.6), we obtain

a(φ,φ) ≥ ‖∇φ‖2 − α‖φ‖2 ≥ γ − α

1 + γ
‖φ‖2

1, ∀φ ∈ H1
0(�).

Thus, for v = uh in (2.5), we have

‖uh‖2
1 ≤ 1 + γ

γ − α
a(uh, uh) = 1 + γ

γ − α
(Fh, uh) ≤ 1 + γ

γ − α
‖Fh‖‖uh‖,

i.e.,

‖uh‖1 ≤ 1 + γ

γ − α
‖Fh‖.

Let Rh = −f (uh)+ Fh. It follows from (A2) that

‖Rh‖2 ≤ 3
(
β2

1 |�| + (β2
2 (1 + γ )2/(γ − α)2 + 1)‖Fh‖2

)
. (2.8)

Notice that uh is the unique weak solution of the boundary value problem

{−�uh = Rh, in �,
uh = 0, on ∂�.

(2.9)
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Therefore, by the results of the solution regularity of (2.9) (see [10]), we have
that uh ∈ H2(�), and

‖uh‖2
2 ≤ ρ3‖Rh‖2 ≤ 3ρ3,

where ρ3 is a positive constant only dependent on�. The estimate (2.7) follows
from the above inequality, (2.3), and (2.8). �	

Next we estimate the error between the weak solution u of (1.1) and its
approximation uh. Recall that u and uh are the unique solutions of the follow-
ing Hammerstein integral equations, respectively (see [6]):

u + Kf (u) = Kg + KẆ, (2.10)

uh + Kf (uh) = Kg + KẆh, (2.11)

where

Kφ(x) =
∫
�

G(x, y)φ(y)dy

and G(x, y) is the Green function of the Laplace equation with homogeneous
Dirichlet boundary condition. It is well-known that

G(x, y) = − 1
2π

log |x − y| + V(x, y) (2.12)

where V(x, y) is a Lipschitz continuous function of x and y (see Sect. 5.14 of
[8]). We also have, by the Poincaré’s inequality (2.6) (see Lemma 2.4 of [6]),

(Kφ,φ) ≥ γ ‖Kφ‖2, ∀ φ ∈ L2(�). (2.13)

The following lemma regarding the regularity of the Green function G defined
in (2.12) will play an important role in our error estimates.

Lemma 2 There exists a positive number ρ4 independent of ε ∈ (0, 1) such that

∫
�

|G(x, y)− G(x, z)|2dx ≤ ρ4ε
−1|y − z|2−ε , ∀ x, z ∈ �. (2.14)

Proof We only need to show that (2.14) holds for the singular part of G. For
0 < ε < 1, we have
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∫
�

(log |x − y| − log |x − z|)2dx

=
∫
�

(|x − y| − |x − z|)2−ε∣∣ log |x − y| − log |y − z|∣∣ε

×
⎛
⎝

1∫
0

dθ
θ |x − y| + (1 − θ)|x − z|

⎞
⎠

2−ε

dx

≤ |y − z|2−ε
∫
�

∣∣ log |x − y| − log |y − z|∣∣ε

×
⎛
⎝

1∫
0

dθ
θ |x − y| + (1 − θ)|x − z|

⎞
⎠

2−ε

dx

≤ |y − z|2−ε
∫
�

∣∣ log |x − y| − log |x − z|∣∣ε
(

1
|x − y| + 1

|x − z|
)2−ε

dx.

Using the Hölder inequality with p = 3
ε

and q = 3
3−ε we have that

∫
�

(log |x − y| − log |x − z|)2dx

≤ |y − z|2−ε
⎛
⎝∫
�

∣∣ log |x − y| − log |x − z|∣∣3dx

⎞
⎠

ε
3

×
⎛
⎝∫
�

(
1

|x − y| + 1
|x − z|

) 3(2−ε)
3−ε

dx

⎞
⎠

3−ε
3

.

Let H = supx,y∈� |x − y|. Then we have

∫
�

∣∣ log |x − y| − log |x − z|∣∣3 ≤ 2
∫
�

(∣∣ log |x − y|∣∣3 + ∣∣ log |x − z|∣∣3
)

dx

≤ 4
∫

|x−y|≤H

∣∣ log |x − y|∣∣3dx

= 8π

H∫
0

r
∣∣ log(r)

∣∣3dr
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and

∫
�

(
1

|x − y| + 1
|x − z|

) 3(2−ε)
3−ε

dx ≤ 2
3(2−ε)

3−ε
∫

|x−y|≤H

1

|x − y| 3(2−ε)
3−ε

dx

≤ 8π

H∫
0

r− 3−2ε
3−ε dr = 8π

3 − ε

ε
H

ε
3−ε ≤ 24πε−1H

ε
3−ε .

Combining the above inequalities, we obtain the desired estimate (2.14). �	
Now we are in a position to establish an error estimate between u and uh.

Theorem 2 Let u and uh be the solution of (1.1) and (2.4), respectively. If f
satisfies (A1) and (A2), then there is a positive constant C3 independent of u and
h such that

E
(
‖u − uh‖2

)
≤ C3β1| log(h)| 1

2 h + C4| log(h)|h2. (2.15)

Proof Subtracting (2.11) from (2.10), we obtain

u(x)− uh(x)+ K(f (u)− f (uh)) = Eh, (2.16)

where Eh = KẆ − KẆh.
We first prove that there exists a positive constant C5 independent of h such

that
E

(
‖Eh‖2

)
≤ C5| log(h)|h2. (2.17)

Using the Ito isometry we have that

E
(
‖KẆ − KẆh‖2

)

= E

⎛
⎜⎝

∫
�

⎡
⎣∫
�

G(x, y)dW(y)−
∫
�

G(x, y)dWh(y)

⎤
⎦

2

dx

⎞
⎟⎠

=E

⎛
⎜⎝

∫
�

⎡
⎣ ∑

T∈Th

∫
T

G(x, y)dW(y)−|T|−1
∑

T∈Th

∫
T

G(x, z)dz
∫
T

1dW(y)

⎤
⎦

2

dx

⎞
⎟⎠

= E

⎛
⎜⎝

∫
�

⎡
⎣ ∑

T∈Th

∫
T

∫
T

|T|−1(G(x, y)− G(x, z))dzdW(y)

⎤
⎦

2

dx

⎞
⎟⎠

=
∫
�

⎛
⎜⎝ ∑

T∈Th

∫
T

⎡
⎣|T|−1

∫
T

(G(x, y)− G(x, z))dz

⎤
⎦

2

dy

⎞
⎟⎠ dx.
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From the Hölder inequality and (2.14) we obtain

E
(
‖KẆ − KẆh‖2

)
≤

∫
�

⎛
⎝ ∑

T∈Th

|T|−1
∫
T

∫
T

(G(x, y)− G(x, z))2dzdy

⎞
⎠ dx

=
∑

T∈Th

|T|−1
∫
T

∫
T

∫
�

(G(x, y)− G(x, z))2dxdzdy

≤
∑

T∈Th

|T|−1
∫
T

∫
T

ρ4ε
−1|y − z|2−εdzdy

≤ ρ4|�|ε−1h2−ε .

Letting ε = 1/| log(h)|, we obtain (2.17) with C5 = eρ4|�|.
Multiplying (2.11) by f (u)− f (uh), we have

(u − uh, f (u)− f (uh)+ (K(f (u)− f (uh)), f (u)− f (uh)) = (Eh, f (u)− f (uh)).

Then, by (2.13) and (A1), we obtain

−α‖u − uh‖2 + γ ‖K(f (u)− f (uh))‖2 ≤ ‖Eh‖‖f (u)− f (uh)‖. (2.18)

Then, from (2.16), we have

‖K(f (u)−f (uh))‖2 = ‖u−uh−Eh‖2 ≥ α + γ

2γ
‖u−uh‖2− 3γ − α

γ − α
‖Eh‖2, (2.19)

where we have used the following inequality with ε = (α + γ )/(2γ ):

‖φ + ψ‖2 ≥ ε‖φ‖2 − 2 − ε

1 − ε
‖ψ‖2, ∀ 0 < ε < 1, φ,ψ ∈ L2(�).

It follows from (A2) that

‖f (u)− f (uh)‖ ≤ β1|�| 1
2 + β2‖u − uh‖.

Thus,

‖Eh‖‖f (u)− f (uh)‖ ≤ β1|�| 1
2 ‖Eh‖ + β2‖u − uh‖‖Eh‖ (2.20)

≤ β1|�| 1
2 ‖Eh‖ + α − γ

4
‖u − uh‖2 + β2

2

α − γ
‖Eh‖2.

Combining (2.18)–(2.20), we obtain

‖u − uh‖2 ≤ C6β1‖Eh‖ + C7‖Eh‖2,
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where C6 and C7 are positive constants independent of β1, u, uh, and h. Then
(2.15) follows from the above inequality and (2.17) �	

3 Finite element methods

In this section, we consider the finite element approxiamtions of variational
problem (2.5) and establish their error estimates.

Let Vh be a linear finite element subspace of H1
0(�)with respect to the trian-

gulation Th specified in Sect. 2. Then the finite element approximation to (2.4)
is: Find Uh ∈ Vh such that

(∇Uh, ∇v)+ (f (Uh), v) = (g + Ẇh, v), ∀ v ∈ Vh. (3.1)

We have the following theorem about the existence of a unique solution Uh of
(3.1).

Theorem 3 If f satisfies (A1) and (A2), the approximate variational problem
(3.1) has a unique solution Uh. In addition, there is a positive constant C8 such
that

E(‖Uh‖2
1) ≤ C8h−2. (3.2)

Proof The proof is the same as the first part of the proof of Theorem 1. �	

In order to estimate the error uh − Uh, we need the Galerkin projection
operator Ph : H1

0(�) −→ Vh defined by

(∇Phw, ∇v) = (∇w, ∇v), ∀ v ∈ Vh, w ∈ H1
0(�).

It is well-known that (see [5])

‖w − Phw‖ + h‖∇(w − Phw)‖ ≤ ρ5h2‖w‖2, ∀ w ∈ H2(�) ∩ H1
0(�), (3.3)

where ρ5 is a positive constant independent of h.

Theorem 4 If f satisfies (A1) and (A2), then there is a positive constant C6 such
that

E(‖u − Uh‖2) ≤ C9| log(h)| 1
2 h. (3.4)

Proof It is easy to see that

(∇(Phuh − Uh), ∇(Phuh − Uh))+ (f (uh)− f (Uh), Phuh − Uh) = 0.
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Thus, we have by (A1) and (A2)

‖∇(Phuh − Uh)‖2

= −(f (uh)− f (Uh), uh − Uh)+ (f (uh)− f (Uh), uh − Phuh)

≤ α‖uh − Uh‖2 + ‖β1 + β2|uh − Uh|‖‖uh − Phuh‖
≤ α‖uh − Uh‖2 + β1|�| 1

2 ‖uh − Phuh‖ + β2‖uh − Uh‖‖uh − Phuh‖

≤ γ + α

2
‖uh − Uh‖2 + β1|�| 1

2 ‖uh − Phuh‖ + β2
2

2(γ − α)
‖uh − Phuh‖2

By Poicaré inequality (2.6), we have

γ ‖uh − Uh‖2 ≤ γ ‖uh − Phuh‖2 + γ ‖Phuh − Uh‖2

≤ γ ‖uh − Phuh‖2 + ‖∇(Phuh − Uh)‖2

≤ γ + α

2
‖uh − Uh‖2 + β1|�| 1

2 ‖uh − Phuh‖

+
(
γ + β2

2

2(γ − α)

)
‖uh − Phuh‖2

Hence, we obtain by (3.3)

‖uh − Uh‖2 ≤ C10(β1h2‖uh‖2 + h4‖uh‖2
2),

where C10 is a positive constant independent on h and β1. By Theorem 1 we
have

E
(
‖uh − Uh‖2

)
≤ C10

(
β1h2E (‖uh‖2)+ h4E

(
‖uh‖2

2

))

≤ C10

(
β1h2E

(
‖uh‖2

2

) 1
2 + h4E

(
‖uh‖2

2

))

≤ C10

(
β1C

1
2
1 h + C2

1h2
)

. (3.5)

Then by Theorem 2, we obtain

E
(
‖u − Uh‖2

)
≤ C5β1| log(h)| 1

2 h + C6| log(h)|h2 + C10

(
β1C

1
2
1 h + C2

1h2
)

,

(3.6)
which leads to the error estimate (3.4). �	
Remark 1 In [12], Gyongy and Martinez studied the finite difference approxi-
mation of (1.1). They proved that

E(‖u − Ud
h‖2) ≤ Chγ (3.7)
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where Ud
h is the finite difference solution for (1.1) and γ < 1. Clearly, our error

estimate is comparable to theirs. In fact, using the technique in this paper, the
error estimate (3.7) can be expressed exactly the same as given in (3.4).

It should be pointed that we also have

E(‖uh‖2
1) ≤ C8h−2.

So uh and its finite element approximation Uh have the same bound of order
h−2. Although uh and Uh are unbounded in H1

0(�), we still have a positive order
estimate of the expectation of the error uh − Uh in L2(�) as shown in (3.5).
When the nonlinear function f in (1.1) is Lipschitz continuous, we have a much
strong error estimate.

Theorem 5 If f is Lipschitz continuous with the Lipschitz constant L less than
γ , then there is a positive constant C11 independent on h such that

E(‖u − Uh‖2) ≤ C11| log(h)|h2. (3.8)

Proof In this case, Assumption (A1) and Assumption (A2) hold for β1 = 0,
β2 = α = L. Then (3.8) follows from (3.6). �	
Remark 2 The estimate (3.8) is optimal with respect to the regularity estimate
of E(‖uh‖2

2). A direct consequence of Theorem 5 is the error estimate when
(1.1) is a linear SPDE, i.e., f (u) = c(x)u, where c(x) ∈ L∞(�) has −α as its
lower bound.

Remark 3 The above methodology can also be applied to the one dimensional
case (� = (a, b)) to generalize the results of [2] and [9] to nonlinear problems.

Remark 4 We should not expect any estimate of E
(‖∇(uh − Uh)‖2) with a

positive order since E(‖uh‖2
2) is of order −2. However, by the proof of The-

orem 4, there is a positive constant C12 independent on h and β1 such that

E
(
‖∇(Phuh − Uh)‖2

)
≤ C12(β1h + h2), (3.9)

which agrees with the property of superconvergence of finite element methods.

4 Numerical experiments

In this section, we present numerical examples to demonstrate our theoreti-
cal results in the previous section. We will consider both linear and nonlinear
problems, first on the unit square and then on the unit disc.

The normal random variables for Ẇh shall be simulated by using the random
number generator gsl_ran_gaussian of the GNU Scientific Library (GSL). The-
oretically, the number of samples M should be chosen so that the error generated
by the Monte Carlo method is in the same magnitude of the errors generated
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Fig. 1 The partition of the
unit square for N = 4

by the finite element approximation. Although for linear problem, E(Uh) is the
finite element approximation of the deterministic solution, we shall evaluate
E(Uh) by using the Monte Carlo method to examine

e1(h) = ‖E(u)− E(Uh)‖

to see if we have used enough samples. We also employ the following two types
of errors

e2(h) = |E(‖u‖2)− E(‖Uh‖2)|,
e3(h) = |E(‖Uh‖2)− E(‖U h

2
‖2)|

to check our theoretical error estimates for linear and nonlinear problems,
respectively. Obviously these two errors together with e1 can be controlled by
the error (E(‖u − Uh‖2))

1
2 , but not equivalent to it. Nevertheless we believe

that they provide good indications about how the error (E‖u − Uh‖2)
1
2 itself

behaves.

Example 1 In this example, we take � to be the unit square, i.e., � = (0, 1) ×
(0, 1). Let the exact solution be u(x, y) = sin(πx) sin(πy) in the absence of the
white noise. The unit square will be triangulated as shown in Fig. 1. We have
that h = √

2/N = 0.3535534, 0.176777, 0.088388, 0.0441942, 0.0220971 for
N = 4, 8, 16, 32, 64.

First, consider the linear problem, i.e., f (u) = 0. In this case, we have that
E(u) = u and ‖E(u)‖2 = 0.25. Recall that (see [8,11])

G(x, y) = 4
π2

∞∑
p=1

∞∑
q=1

1
(p + q)2

sin(pπx) sin(qπy).
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Table 1 Linear problem on the unit square: Test 1

M N h e1 Rate E(‖Uh‖2) e2 Rate

2000 4 0.353553 7.95e–2 0.1867162 6.82e–2
8000 8 0.176776 2.10e–2 1.92 0.2351932 1.97e–2 1.79
32000 16 0.088388 5.41e–3 1.96 0.2492230 5.69e–3 1.79
128000 32 0.044194 1.43e–3 1.91 0.2529695 1.95e–3 1.55

Table 2 Linear problem on the unit square: Test 2

M N h e1 Rate E(‖Uh‖2) e2 Rate

2000 4 0.353553 7.88e–2 0.1875694 6.73e–2
8000 8 0.176776 2.14e–2 1.88 0.2347563 2.02e–2 1.74
32000 16 0.088388 5.74e–3 1.90 0.2488673 6.05e–3 1.74
128000 32 0.044194 1.50e–3 1.93 0.2529045 2.01e–3 1.59

Table 3 Linear problem on the unit square: Test 3

M N h e1 Rate E(‖Uh‖2) e2 Rate

2000 4 0.353553 7.87e–2 0.1876089 6.73e–2
8000 8 0.176776 2.15e–2 1.87 0.2346670 2.02e–2 1.73
32000 16 0.088388 5.49e–3 1.97 0.2491416 5.78e–3 1.81
128000 32 0.044194 1.41e–3 1.96 0.2530078 1.91e–3 1.60

It is easy to see from the Ito’s isometry that

E(‖u‖2) = ‖E(u)‖2 +
∫
�

∫
�

G(x, y)2dxdy.

By simple calculation, we obtain

E(‖u‖2) = 0.25 + 4
π4

∞∑
n=2

n − 1
n4 = 0.25491673490338.

The computational results are displayed in Tables 1, 2, and 3. The numbers
of samples, M, are displayed in the first columns of the tables. The third and
forth columns of the tables show that the rate of convergence for E(Uh) is of
order 2 as expected, which implies that our sample sizes are good enough to
ensure the accuracy of the Monte Carlo method. We observe from the last three
columns that our finite element method converges faster than the theoretical
rate O(h log(h)). Notice that the rates on the last rows for e2 are significantly
smaller than others. We believe that this is due to the sample error rather than
the finite element error.
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Table 4 Nonlinear problem on the unit square: Test 1

M N h E(‖Uh‖2) e3 Rate

1000 4 0.353553 0.18951426
4000 8 0.176776 0.23499990 4.5486e–2
16000 16 0.088388 0.24867523 1.3675e–2 1.73
64000 32 0.044194 0.25243723 3.7620e–3 1.86

Table 5 Nonlinear problem on the unit square: Test 2

M N h E(‖Uh‖2) e3 Rate

1000 4 0.353553 0.19040172
4000 8 0.176776 0.23525031 4.4849e–02
16000 16 0.088388 0.24881669 1.3566e–02 1.73
64000 32 0.044194 0.25251834 3.7016e–03 1.87

Table 6 Nonlinear problem on the unit square: Test 3

M N h E(‖Uh‖2) e3 Rate

1000 4 0.353553 0.18892402
4000 8 0.176776 0.23617167 4.7248e–2
16000 16 0.088388 0.24945892 1.3287e–2 1.83
64000 32 0.044194 0.25248505 3.0261e–3 2.13

Next, let us consider the nonlinear problem with f (u) = sin(u). The results
are displayed for three tests in Tables 4, 5, and 6. Again, we observe that our
finite element method converges faster than the theoretical rate O(h log(h)).

Example 2 In this example, let� be the unit disc and the exact solution is u(x) =
sin(π |x|2) in the absence of white noise. The unit disc is initially triangulated by
“Triangle” (by Jonathan Richard Shewchuk at http://www.cs.cmu.edu/ quake/
triangle.html) and then the mesh is optimized by “Meshgen” (by Lili Ju at
http://www.math.sc.edu/∼ju/). The triangulation with h = 0.312869 is depicted
in Fig. 2.

For the linear problem (f (u) = 0), we have that E(u) = u and ‖E(u)‖2 = π
2 .

It is well-known that

G(x, y) = 1
4π

log
1 + |x|2|y|2 − 2x · y

|x − y|2 .

Then we obtain numerically

E(‖u‖2) = 1.62016354682162.

From Tables 7, 8, 9, 10, 11, and 12, we have the same observations as in Example
1 for the linear problem (f (u) = 0) and the nonlinear problem (f (u) = sin(u)).
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Fig. 2 The partition of the
unit disc

Table 7 Linear problem on the unit disc: Test 1

M h e1 Rate E(‖Uh‖2) e2 Rate

1000 0.312869 1.43e–1 1.3450300 2.75e–1
4000 0.180526 4.66e–2 2.04 1.5314252 8.87e–2 2.06
16000 0.091617 1.17e–2 2.04 1.5991079 2.11e–2 2.12
64000 0.046305 3.09e–3 1.95 1.6158970 4.27e–3 2.34

Table 8 Linear problem on the unit disc: Test 2

M h e1 Rate E(‖Uh‖2) e2 Rate

1000 0.312869 1.46e–1 1.3327223 2.87e–1
4000 0.180526 4.57e–2 2.12 1.5377359 8.24e–2 2.27
16000 0.091617 1.20e–2 1.97 1.5976269 2.25e–2 1.91
64000 0.046305 3.19e–3 1.94 1.6138093 6.35e–3 1.86

Table 9 Linear problem on the unit disc: Test 3

M h e1 Rate E(‖Uh‖2) e2 Rate

1000 0.312869 1.45e–1 1.3371378 2.83e–1
4000 0.180526 4.61e–2 2.08 1.5391690 8.10e–2 2.28
16000 0.091617 1.17e–2 2.02 1.5991064 2.11e–2 1.99
64000 0.046305 2.86e–3 2.07 1.6153823 4.78e–3 2.17

5 Conclusions

Our aim in this work is to develop the finite element method for a class of semil-
inar elliptic stochastic differential equations driven by additive white noises. The
previously published works in this area that we are aware of are [2,9], in which
a one dimensional linear problem was studied. In this paper, we substantially
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Table 10 Nonlinear problem on the unit disc: Test 1

M h E(‖Uh‖2) e3 Rate

1000 0.312869 1.33172989
4000 0.180526 1.53021581 1.9849e–1
16000 0.091617 1.59739334 6.7178e–2 1.60
64000 0.046305 1.60845636 1.1063e–2 2.64

Table 11 Nonlinear problem on the unit disc: Test 2

M h E(‖Uh‖2) e3 Rate

1000 0.312869 1.34696047
4000 0.180526 1.53195882 1.8500e–1
16000 0.091617 1.59393834 6.1980e–2 1.61
64000 0.046305 1.60783819 1.3900e–2 2.19

Table 12 Nonlinear problem on the unit disc: Test 3

M h E(‖Uh‖2) e3 Rate

1000 0.312869 1.35172754
4000 0.180526 1.52685297 1.7513e–1
16000 0.091617 1.59138836 6.4535e–2 1.47
64000 0.046305 1.60794464 1.6556e–2 1.99

extend their work from one dimension to two dimension and from linear prob-
lems to nonlinear problems. More importantly, we allow the domain to be any
convex set with regular boundary, not just a rectangle, which is the main advan-
tage of the finite element method over other methods such as finite difference
methods and spectral finite element methods. Both our theoretical analysis and
numerical experiments establish the rates of convergence of the finite element
approximate solutions. These rates provide a theoretical basis in determining
the numbers of samples in Monte Carlo simulation for the discretized problems.
Some of the interesting extensions of the current work include more efficient
numerical simulations for white noise and numerical approximations for SPDEs
with general nonlinear terms and with general random forcing terms.
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