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In this paper, we present a new result about the estimate of the cutoff error of the Wiener-Ito chaos
expansion for a generalized random variable. As an application, we use the result to obtain an error
estimate for the finite element approximation of the stochastic Helmholtz equation.
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1. Introduction

In the past few years, there has been growing interest in numerical methods for stochastic

partial differential equations (SPDEs): see [1–3,5,6,8–11,13,14]. One of the important

topics is the numerical approximation of solutions to SPDEs, where some of the coefficients

are random variables. Some of the interesting approaches are spectral finite element methods

using formal Hermite polynomial chaos [9,13], hp and hk finite element methods using the

tensor product of the space of random variables and Sobolev space [2] and the finite element

method with Wick product variational formulation [11]. In all of the above approaches, the

errors of numerical solutions are generated by two sources: the finite element approximation

error and the cutoff error of series expansion of the solution as a random variable. Thus, to

control the overall error of the numerical solution, it is essential to balance the errors from

each of the two sources. As demonstrated in [2,3,11], the estimate of the first error can be

obtained in the same way as in the deterministic case, while the estimate of the second error

depends on the estimate of the cutoff error of random variables from using either the

Karhunen-Loeve expansion or the Wiener-Ito chaos expansion.

The main result of this paper is an estimate for the cutoff error of the Wiener-Ito

expansions for generalized random variables in Kondratiev norms. The first such estimate is

due to Benth and Gjerde [3]. Based on the estimate, they established a framework for error

estimates of finite element approximations of SPDEs. In this paper, we shall derive a new,
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improved error estimate. An immediate application of this result is obtaining improved error

estimates for the finite element approximations of SPDEs.

The paper is organized as follows. In the next section, we provide a brief mathematical

background of the generalized random variables following the outline given by [11]. Then in

Section 3, we prove the main result of the paper. Finally in Section 4, we apply the result in

Section 3 to obtain error estimates for the finite element approximations of stochastic

Helmholtz equations.

2. Preliminaries

Let S denote the Schwartz space SðRdÞ of rapidly decreasing C 1 functions on Rd. The dual

space S0 equipped with the weak-star topology is the space of tempered distributions. By the

Bochner-Minlos theorem there exists a unique probability measure m on the members of

family BðS0Þ of Borel subsets of S0 such that

E½eið·;fÞ� U

ð
S0

ei,v;f. dmðvÞ ¼ e
2kfk

2
0

2

where kfk0 ¼ ðf;fÞ ¼
Ð
Rd fðxÞ2 dx. The triplet ðS0;B;mÞ forms our basic probability space.

We will use the following multi-index notation. Let T ¼ NNc

0 denote the set of multi-

indices a ¼ ða1;a2; . . .Þ, where a [ N0 and only finitely many ai – 0. For each a;b [ T
we define the usual operations aþ b ¼ ða1 þ b1; . . .Þ, a! ¼ a1!a2!. . .; and jaj U Sjaj.

For each a [ T define the stochastic variable

HaðvÞ ¼
Y1
j¼1

haj
ð, v;hj .Þ;

where hn denotes the Hermite polynomial

hnðxÞ ¼ ð21Þne
x 2

2
dn

dxn
e2

x 2

2

� �
ðn [ NÞ;

and the family {hj}
1
j¼1 forms an orthonormal basis for L2ðRdÞ. This orthonormal family is

constructed from the Hermite functions

jnðxÞ ¼ p21=4ððn2 1Þ!Þ21=2e2x 2=2hn21ð
ffiffiffi
2

p
xÞ ðx [ R; n [ NÞ

in the following way: let d ¼ ðd1; . . .; ddÞ [ Nd
0 be the d-dimensional multi-indices and let

{d ðiÞ}ði [ NÞ be some fixed ordering of these multi-indices such that i , j ) jd ðiÞj # jd ð jÞj.

Then, we define hj as the tensor product

hj U j
d
ð jÞ

1
^· · ·^j

d
ð jÞ

d

ð j [ NÞ:

The family {jn}
1
n¼1 is a subset of SðR

dÞ and forms an orthonormal basis for L2ðRdÞ. The

following theorem can be found in [7].
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Theorem 1. (WIENER-ITO CHAOS EXPANSION THEOREM) Every f [ L2ðmÞ has a unique

Wiener-Ito chaos expansion

f ðvÞ ¼
X
a[T

caHaðvÞ where ca [ R: ð1Þ

In addition, the family {Ha

ffiffiffiffiffi
a!

p
}a[T constitutes an orthonormal basis for L 2 (m) and we

have that

kfk
2
L 2ðmÞ ¼

X
a[T

c2aa!

for every f [ L2ðmÞ.

Let V be any real Hilbert space and r [ ½21; 1�, k [ R. Then the stochastic Hilbert space

ðSÞr;k;V is defined as the set of all (formal) sums

f ¼
X
a[T

f aHa; where f a [ V for alla [ T : ð2Þ

such that the norm

k fkr;k;V ¼
X
a[T

k f ak
2
V ða!Þ

1þrð2NÞka

 !1=2
ð3Þ

is finite. The weights are defined as ð2NÞka U
Q1

j¼1ð2jÞ
kaj .

Notice that the norm k·kr;k;V is well defined by the inner product ð·; ·Þr;k;V defined as

ð f ; gÞr;k;V ¼
X
a[T

ð f a; gaÞða!Þ
1þrð2NÞka

for f ¼
P

a[T f aHa and g ¼
P

a[T gaHa given in Sr;k;V .

For f ; g [ Sr;p;V definite the Wick product of f and g as follows.

fSg U
X
g[T

X
aþb¼g

f agb

 !
Hg: ð4Þ

To ensure that the operator g 7! gSf is bounded and continuous on S21;k;0, we introduce

the Banach spaces F lðDÞ:

F lðDÞ U f ðxÞ ¼
X
a

f aðxÞHa : f a measurable; k fkl;*
, 1

( )
ð5Þ

where D is an open subset of Rd and k fkl;* is defined as

k fkl;*
¼ sup

x[D

X
a

j f ajð2NÞla

 !
:

Let H m (D) be the usual Sobolev spaces and

H1
0ðDÞ U {v; v [ H 1ðDÞ and y ¼ 0 on ›D:

when V ¼ HmðDÞ, we denote the norm k·kr;k;V by k·kr;k;m. The following result is proved

in [12].
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Proposition 1. (VAGE INEQUALITY) Let D , Rd be an open set and l [ R. Then, for

l $ ðk=2Þ g 7! fSg defines a continuous operator on S21;k;0. Further more, we have

k fSgk21;k;0 # k fkl;*
kgk21;k;0: ð6Þ

3. Approximation of generalized random variables

Introduce the set of multi-indices

An;k ¼ {a [ Nk
0jak – 0;a1 þ · · ·þ ak ¼ n}

and

An;k ¼ {a [ Nk
0jal ¼ 0; l . k;a1 þ · · ·þ ak ¼ n}

where n; k [ N. For N;K [ N and the generalized random variable f defined in equation (2),

we define the finite dimensional approximation

FN;K U c0 þ
XN
n¼1

XK
k¼1

X
a[An;k

caHa:

First we prove the following lemma.

Lemma 1.

X
a[An;k

ð2NÞ2at #
22ntQk

j¼2 12 1
j t

� � : ð7Þ

Proof. The proof is by induction. The estimate is clearly true for k ¼ 1. For k ¼ 2 we have

X
a[An;k

ð2NÞ2at ¼
X

a1þa2¼n

22a1tð2 £ 2Þ2a2t ¼
Xn
i¼0

22ðn2iÞtð2 £ 2Þ2it ¼ 22nt
Xn
i¼0

22it

¼
22ntð12 22ntÞ

12 22t
#

22nt

12 1
2t

:

Thus, equation (7) is also valid for k ¼ 2. Assume that equation (7) is true for k ¼ p. Then

X
a[An;pþ1

ð2NÞ2at ¼
Xpþ1

i¼0

X
a[An2i;p

ð2NÞ2atð2ð pþ 1ÞÞ2it #
Xpþ1

i¼0

2ðn2iÞt22itQp
j¼2 12 1

j t

� � ð pþ 1Þ2it

¼
22ntQp

j¼2 12 1
j t

� �Xpþ1

i¼0

ð pþ 1Þ2ti ¼
22ntð12 ð1þ pÞ2tð pþ1ÞÞQp
j¼2 12 1

j t

� �
12 1

ð pþ1Þt

� �

#
22ntQpþ1

j¼2 12 1
j t

� � :
The proof is complete. A
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Lemma 2.

c1ðtÞ U
Y1
j¼2

12
1

j t

� � !21

# e
2

t21 ð8Þ

and

c2ðtÞ U
Y1
j¼2

12
1

ð2jÞt

� � !21

# e
1

2ðt21Þðt21Þ: ð9Þ

Proof. We only prove equation (8). The proof of equation (9) is similar. We have that

ln
Y1
j¼2

12
1

j t

� �
¼
X1
j¼2

ln 12
1

j t

� �
$ 2

X1
j¼2

2

j t
$ 22

ð1
1

1

x t
dx ¼ 2

2

t2 1
:

Thus

Y1
j¼2

12
1

j t

� � !21

# e
2

t21:

A

We are now ready to prove the main result of the paper.

Theorem 2. Let p . 0 be given and assume that t . 1. Then, for any F [ Sr;2pþt;V

kF2FN;Kkr;2p;V # kFkr;2pþt;V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðtÞ

1

K t21
þ BðtÞ

1

2tN

r
ð10Þ

where

AðtÞ ¼ e
2

t21
t

t2 1

BðtÞ ¼ e
1

2t21ðt21Þ
1

2tðt2 1Þ
:

Proof. Let

cn;k U
X
a[An;k

caHa:

We have that

F2FN;K ¼
X1
n¼1

X1
k¼1

cn;k 2
XN
n¼1

XK
k¼1

cn;k

¼
X1
n¼1

XK
k¼1

cn;k þ
X1
n¼1

X1
k¼Kþ1

cn;k 2
XN
n¼1

XK
k¼1

cn;k

¼
X1

n¼Nþ1

XK
k¼1

cn;k 2
X1

k¼Kþ1

X1
n¼1

cn;k:
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Thus

kF2FN;Kkr;2p;V¼
X1

n¼Nþ1

XK
k¼1

X
a[An;k

kcak
2
V ða!Þ

1þrð2NÞ2ap

þ
X1

k¼Kþ1

X1
n¼1

X
a[An;k

kcak
2
V ða!Þ

1þrð2NÞ2ap

¼
X1

n¼Nþ1

XK
k¼1

X
a[An;k

kcak
2
V ða!Þ

1þrð2NÞ2aðp2tÞð2NÞ2at

þ
X1

k¼Kþ1

X1
n¼1

X
a[An;k

kcak
2
V ða!Þ

1þrð2NÞ2aðp2tÞð2NÞ2at

#kF2FN;Kkr;2pþt;V

X1
n¼Nþ1

XK
k¼1

X
a[An;k

ð2NÞ2atþ
X1

k¼Kþ1

X1
n¼1

X
a[An;k

ð2NÞ2at

 !
:

Let

IN;K ¼
X1

n¼Nþ1

XK
k¼1

X
a[An;k

ð2NÞ2at

and

IK ¼
X1

k¼Kþ1

X1
n¼1

X
a[An;k

ð2NÞ2at:

We first estimate IN,K. Using the result of Lemma 1, we have that

IN;K ¼
X1

n¼Nþ1

XK
k¼1

Xk
i¼1

X
a[ �An2i;k21

ð2NÞ2at

0
@

1
Að2kÞ2it #

X1
n¼Nþ1

XK
k¼1

Xk
i¼1

22ðn2iÞtQk21
j¼2 12 1

j t

� � ð2kÞ2it

¼
X1

n¼Nþ1

XK
k¼1

Xk
i¼1

22ntQk21
j¼2 12 1

j t

� � k2it ¼
X1

n¼Nþ1

XK
k¼1

22ntQk
j¼2 12 1

j t

� � k2tð12 k2ktÞ

#
1Q1

j¼2 12 1
j t

� � X1
n¼Nþ1

22nt
XK
k¼1

1

k t
# 1þ

1

t2 1

� �
e

2
t21

1

2Nt
¼ AðtÞ

1

2Nt
:

Next, we estimate IK. It is easy to see that

X1
n¼1

X
a[An;k

ð2NÞ2at ¼
X

a1;...;ak21$0;ak$1

Yk
j¼1

ð2jÞ2taj :

Thus

X1
n¼1

X
a[An;k

ð2NÞ2at ¼
Yk21

j¼1

X1
aj¼0

ð2jÞ2taj

X1
an¼1

ð2kÞ2tan

 !
¼
Yk21

j¼1

1

12 1
ð2jÞt

1

ð2kÞt 2 1
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Applying Lemma 2, we have that

IK # e
1

2t21ðt21Þ
1

2t

X1
k¼Kþ1

1

k t
# e

1
2t21ðt21Þ

1

2t

ð1
K

1

x t
dx ¼ BðtÞ

1

K t21
:

The proof is complete. A

Remark. Benth and Gjerde [3] obtain the first cutoff error for th Wiener-Ito expansion. There

the estimate is

kF2FN;Kkr;2p;V # kFkr;2pþt;V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðtÞ

1

K t21
þ BðtÞ

t

2tðt2 1Þ

� �tN
s

ð11Þ

where t . t* ¼ 2t*ðt*2 1Þ . 1:5. Clearly, our estimate is an substantial improvement.

4. Finite element methods for stochastic Helmholtz equations

4.1 Variational formulation

We consider the Helmholtz equation

Duþ kSu ¼ f in D ð12Þ

u ¼ 0 on ›D ð13Þ

where k ¼ k0ðxÞ þ
P

akaðxÞHaðvÞ is a generalized random variable. For u; v [ Sr;p;V , define

a bilinear form

aðu; vÞ ¼ ð7u;7vÞr;p;0 þ ðku; vÞr;p;0: ð14Þ

We have the following continuity property and Garding inequality for a.

Proposition 2. Assume that k [ S21;l;0 and l $ ðk=2Þ. Then there exist constants c1, c2 and

c3 such that

(1) aðu; vÞ # c1kuk21; p;1kvk21; p;1

(2) aðu; uÞ þ c2kuk21; p;0 $ c3kuk21; p;1:

Proof. (i) is a direct consequence of Proposition 1. To prove (ii) we let �k0 ¼ esssup x[Djk0ðxÞj.

Then by a result of Vage [12] (see also [11]), we have that

ððk þ c2ÞSu; uÞ21;p;0 $ ðc2 2 �k0 2 2k22lÞkkk
*;l
Þkuk21; p;0:

Choosing c2 such that c2 2 �k0 2 2k22lkkk*;l . 0, we have that

aðu; vÞ þ c2kkk21;p;0 $ k7uk21;p;0 þ c2 2 �k0 2 2k22lÞkkk*;lÞkuk21;p;0 $ c3kuk21;p;1

where c3 ¼ min {1; c2 2 �k0 2 2k22lkkk*;l}. The proof is complete. A

Remark. For deterministic constant wave number k, the Garding inequality ensures existence

of unique solution except for countable many k. However, it is not clear if this is the case
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when k is a random field. Nevertheless, Garding inequality is essential in proving the

existence and rate of convergence of the finite element approximation for the Helmholtz

equation.

4.2 Finite element approximations

Assume that D is a polygonal domain. A regular triangulation of D is a finite collection of

open triangles {T i}
M
i¼1 such that

i) T i > T j ¼ {} if i – j and < �T i ¼ �D.

ii) For i – j, T i and T j is either

(a) empty or

(b) a common side of T i and T j or

(c) a common edge of element T i and T j.

With the triangular partition of D, the finite element subspace Vh , H1
0ðDÞ is defined as

the set of piecewise linear functions

Vh U {vh [ Cð �DÞ; vh ¼ 0 on ›D; vhjT i
is a linear function}:

We assume that the following approximation property holds for Vh.

inf
vh[Vh

ku2 vhkH1
0ðDÞ

# ChkukH 2ðDÞ ;u [ H 2ðDÞ ð15Þ

Now define a finite dimensional subspace V
N;K
h of H1

0ðDÞ £ S0 as

V
N;K
h U ch0ðxÞ þ

X1
n¼1

XK
k¼1

chaHa

( )

where ca [ Vh. For F ¼
P

a[T caHa, let

F
N;K
h ¼ ch0ðxÞ þ

X1
n¼1

XK
k¼1

chaHa

where cha are the projections of ca from H1
0ðDÞ to V

N;K
h . The following result is a direct

consequence of Theorem 2 and equation (15) (see [3] for a proof).

Proposition 3..

kF2F
N;K
h k21;p;1 #

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðtÞ

1

K t21
þBðtÞ

1

2tN

r
kFkr;2pþt;1þChkFkr;2p;1: ð16Þ

The finite element approximation for equations (12) and (13) is to seek u
N;K
h [ V

N;K
h such

that

aðu
N;K
h ; vÞ ¼ ð f ; vÞ; ;v [ V

N;K
h : ð17Þ

Y. Cao186



Theorem 3. Assume that there exists a unique solution u for equations (12) and (13). Then

there exists h0 . 0 such that for h , h0, equation (17) has a unique solution and

ku2 u
N;K
h k21;p;1 #

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðtÞ

1

K t21
þ BðtÞ

1

2tN

r
kFkr;2pþt;1 þ ChkFkr;2p;2

where C is a constant independent of h.

Proof. Using the Garding inequality, continuity property of a (Proposition 2) we can prove

(see [4] for technical details)

ku2 u
N;K
h k21;p;1 # C inf

v[V
N;K
h

ku2 vk21;p;2:

The result of the theorem then follows from Proposition 3. A

Remark. As pointed out in [2,8], a drawback of the Wick product is that higher order statistics

do not have much effect on the solutions of SPDEs, which is generally not the case for

nonlinear problems. However, the Wick product is still a useful tool to study SPDEs under

certain circumstances. We refer the reader to [7] for detailed analysis and to [11] for

numerical experiments on Wick products.
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