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ABSTRACT

In this paper we estimate a dynamic demand model of U.S. produced softwood
lumber using a cointegrated vector autoregression model. We find that demand for U.S.-
produced lumber responds to prices of softwood lumber, housing starts, and lumber
prices in the futures market, and that various trade measures against Canadian softwood
lumber imports have boosted this demand. These results suggest that U.S. lumber
producers and consumers could use price information from futures markets to manage
price risks and adjust their production/consumption activities and that U.S. producers’
political actions have paid huge dividends.
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INTRODUCTION

As softwood lumber is the largest single category of forest products output in the United
States, its demand and supply are of special interest to both private entrepreneurs and public
policy-makers. For example, to the extent that softwood lumber in U.S. markets is primarily
sourced in the U.S. and Canada, it is not surprising to see that U.S. producers have lobbied for
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restrictions on Canadian lumber imports and that the two countries have engaged in a long-
lasting softwood lumber trade war (Zhang 2007). The various trade-restrictive measures on
Canadian lumber imports historically and currently, as well as the market structure for
softwood lumber, characterized by inelastic demand and supply, collectively render lumber
prices volatile in the U.S. (Zhang and Sun 2001). Thus, understanding the dynamics of
demand for U.S. produced lumber is helpful for many U.S. lumber producers to make their
production decisions and U.S. consumers to adjust their consumption.

Herein, the estimated U.S. softwood lumber demand model differs from previous
estimated models (e.g., Uri and Boyd 1990; Adams et. al. 1992) in three ways: (a) our
demand is estimated with monthly data, while most previous work used annual data; (b) we
focus on U.S.-sourced lumber, while previous work emphasized annual U.S. demand for
softwood lumber from all sources (U.S. production and imports); and more importantly (c)
we test for and incorporate an empirical link between current demand for U.S.-produced
lumber and the lumber futures market, whereby producers and consumers may use prices of
lumber futures to adjust their production and consumption activities. In addition, we
demonstrate the cointegrated VAR model’s policy-analytic usefulness in empirically
assessing the positive impacts that various trade restrictions measures have had on demand
for U.S.-produced softwood lumber. Since we examine the success with which some of these
trade measures accomplished their purpose and augmented supply and demand of U.S.-
sourced softwood lumber, we focus on quantities of U.S. produced lumber. The next section
presents the demand model for U.S. produced lumber, followed by estimation methods, data
and results. The final section concludes.

A DYNAMIC DEMAND MODEL FOR U.S.-PRODUCED LUMBER

As Uri and Boyd (1990) stated, the demand for softwood lumber at the regional level in a
given period is often expressed as a Cobb-Douglas function:

Qu = K B* B HY M® ()
or
InQ,= Inp+alnP, +8 InP;+ yInH+ § InM+¢ 2)

where Qp, is quantity demanded for softwood lumber, Py is lumber price, Ps is price of a
substitute good, H is housing starts, M is maintenance, remodeling, and repairing activities;
u (or Inp),a, B,y,and & are parameters to be estimated, and € is an error term. Often the
quantity of softwood lumber demanded in previous periods is also included. At the national
level, other demand models such as the end-use approach (Adams et al. 1992) and product
diffusion approach (Spelter 1985) have been used. Again, all previous demand studies have
used annual data and irrespective of where the lumber is produced.

Our interest in this paper is monthly demand for U.S. produced lumber. Demand of
lumber substitutes is highly inelastic in such short-term (monthly) horizons so that the term,
yInPs, is close to zero(yln Py — 0). Further, the maintenance, remodeling, and repairing
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activities are highly correlated with housing starts. Thus, U.S. producers may consider price
expectations, expressed in the lumber futures prices, as an indicator of demand in the near
future. Thus, we have

QL = R K" HY 3)

where P is the price of lumber futures and w is a parameter to be estimated. Here, Py and P
may be seen as prices of close substitute lumber products: the currently valued lumber priced
at Py that would have a negative exponent (0. < 0) and its time-differentiated substitute
delivered at a later date and priced at P that would have a positive coefficient (w > 0).
Equation 3 is the basic model of this paper. Should o and w be statistically identical, but

with opposite signs (i.e., ¢ = — w), we would have
P
Q= 1 Y HY )
F
or
InQ,= Inp+alnP,—alnP+ ylnH+ € 5)

Obviously, demand for U.S. produced lumber is affected by the various trade restriction
measures placed on Canadian lumber imports. Hence we used various dummy variables to
account for the effects of important and potentially market-influencing events. This model
was estimated with time series data using a cointegration approach (cointegrated VAR
model).

ESTIMATION METHODS AND DATA

The Cointegration Approach and Data

As is well known, economic time series often fail to meet conditions of weak stationarity
(also known as stationarity and ergodicity) required of valid inference. In some cases,
applying regression to time-ordered data generate biased estimators (Granger and Newbold
1986, p. 1-5). On the other hand, while often individually non-stationary, such series can form
vectors with stationary linear combinations, whereby the series move in tandem and in a
stationary manner as a group known as an error-corrected cointegrated system (Johansen and
Juselius 1990).

Based on Equation 5, we found monthly data for the following endogenous variables
(denoted by parenthetical labels) with which to conduct this study:

e U.S. softwood lumber production (Qy) in millions of board feet. These data were
obtained from Western Wood Products Association and Southern Forest Products
Association (G. Andrew 2012; V. Barabino, 2012. Pers. Comm.).



152 Ronald A. Babula, Daowei Zhang, and John Paul Rothenberg

e U.S. housing starts (H) in thousands of units, not seasonally adjusted (U.S. Census
Bureau 2012).

e U.S. wholesale price of softwood lumber (Py): This is the U.S. producer price index
or PPI for softwood lumber in the lumber and wood products group of PPIs, Series
no. WPUO811. This variable represents current U.S. softwood lumber price.

e Price of Softwood Lumber Futures (Pg): This is the average monthly settlement price
of the CME Group’s Random Length Lumber Futures contract that trades in volumes
of 110,000 board feet of random length (8 to 20 feet) softwood 2-by-4s.! Py is the
average of softwood lumber futures 45 days forward from the current pricing point,
P,, above.?

Modeled in natural logarithms, our data are shown to be non-stationary or integrated of
order 1. An estimation period of January, 1992 through May, 2012 (1992:01 — 2012:05) was
chosen because previous U.S. softwood lumber production data are not available at the
monthly level.

Following Juselius and Toro (2005) and Juselius (2006, chs. 1-4), we examined the
logged levels and differences to assess the data’s non-stationarity properties. Such
examinations led to formulation of specification implications of these properties that utilize
inherent stores of information to avoid compromised inference, and in some cases, biased
estimates (Granger and Newbold 1986). Incorporating statistically supported specification
implications in turn results in a statistically adequate underlying VAR model (and
algebraically equivalent unrestricted VEC) with which the cointegrated properties of the four
endogenous variables can be exploited.

The Underlying Statistical Model: The Levels VAR and Unrestricted VEC
Equivalent®

Sims (1980) and Bessler (1984) note that a VAR model posits each endogenous variable
as a function of k lags of itself and of each of the system’s remaining endogenous variables.
The above lumber-related variables render the following 4-equation model in lagged levels:

X() = a(1,1)*Qu(t-1) + . . . + a(1k)*Qu(t-k) +

a(2,1)*H(t-1) + . . . + a(2,k)*H(t-k) +

a(3,1)*Py (t-1) + . . . + a(3,k)*Py(t-k) +

a(4,1)*Pr(t-1) + . . . + a(4,k)*Pe(t-k) +

a(c)*CONSTANT + a(T)*TREND + a(s)*SEASONALS + y(t) (6)

where X(t) = Q(t), H(t), P.(t), and Pg(t). The asterisk denotes the multiplication operator; t

! The chosen roll methodology on the Bloomberg terminal prices the front month contract with a roll into the next
nearest contract on the first business day of the front month contract’s expiration month.

2 The average estimate that Py prices a position at an average horizon of 45 days forward of P arises from a number
of factors. The 45-day average estimate uses the assumptions that (i) a monthly average price presents
approximately half a month (15 days), (ii) the contract lists every other month, and (iii) average settlement
occurs about 15 days into the delivery month. Hence, the following summation arises: 15+15 or 15+30+15.
The 45-day average arises from taking an average of the latter two possibilities.

3 This section draws heavily on Johansen and Juselius (1990) and Juselius (2006).
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refers to current time period; and y(t) is a vector of white noise residuals. The a-coefficients
are ordinary least squares regression estimates with the first parenthetical digit denoting the
four endogenous variables as ordered in X(t)’s definition, and the second reflecting the lagged
value. The lag structure, k=3, was suggested from the application of Tiao and Box’s (1978)
lag search procedure. The a(c) denotes the intercept generated on a vector of unity values,
while a(T) is the coefficient generated on a time trend or TREND. Equation 6 also includes a
vector of 11 centered seasonal variables and a number of other binary variables discussed
below.

It is well known that Equation 6, known as a levels VAR, with a lag order-k can be
equivalently written more compactly as an unrestricted vector error correction (unrestricted
VEC) model (Juselius 2006, p. 59-63; Johansen and Juselius 1990):

Ax(t) = TAY*AX(t-1) + . . . + T(k-1)*Ax(t-k+1) + TT*x(t-1) + OD() + &(t) (7

The endogenous variable number, p, is 4. The &(t) are white noise residuals, the delta is
the difference operator, while the x(t) and x(t-1) are p by 1 vectors of the endogenous
variables in current and lagged levels. The I'(1), . . ., I'(k-1) terms are p by p matrices of short
run regression coefficients, and I1 is a p by p long run error correction term to account for
endogenous levels. The ®D(t) is a set of deterministic variables, including an array of binary
(dummy) variables that will be added to address stationarity issues and policy and market
events. The error correction (EC) term is decomposed as follows:

M=ap ®)

The a is a p by r matrix of adjustment coefficients (r is the number of cointegrating
relationships or the reduced rank of IT discussed below). The B is a p by r vector of
cointegrating parameters.

The error correction or EC term retains the levels-based and other long run information:
linear combinations of non-differenced and individually I(1) levels variables (under
cointegration); permanent shift binaries to capture more enduring effects of policy/market
events (presented below); and a linear trend. The term [['(1)*Ax(t-1) . . J(k-DAx(t-k+1),
®D(t)] collectively comprises the model’s short run/deterministic component (hereafter
denoted short run component) that includes the permanent shift binaries in differenced form,
observation-specific outlier binaries (introduced below), and seasonal binaries.

Having followed Zhang (2007), Nagubadi et al. (2009) and Majumdar, et al. (2011),
along with market knowledge and expertise, we initially restricted the following non-
differenced permanent shift binary variables to the levels-based error-correction space to
account the long run effects of seven important and potentially market-influencing events:

e NAFTA: This binary is defined for the January, 1994 implementation of the North
American Free Trade Agreement (NAFTA) and takes a value of unity for the
1994:01 — 2012:05 period and zero otherwise.

e URUGUAY: This binary is defined for the January, 1995 implementation of the
Uruguay Round Trade Agreement and takes a value of unity for the 1995:01 -
2012:05 period and zero otherwise.
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e SLA96: This binary accounts for the first U.S.-Canada softwood lumber agreement.
The binary takes a value of unity during 1996:04 — 2001:03 when the U.S. imposed
an export tax-rated quota system on imports of Canadian-sourced lumber, and of zero
otherwise.

e SLAOQ06: This binary accounts for the second U.S.-Canada softwood lumber
agreement in force during the 2006:10 — 2012:05 period when Canada agreed to a
price-adjusted TRQ on U.S.-bound Canadian softwood lumber shipments. The
variable takes a value of unity during this period and of zero otherwise.

e ADCVD: This variable captures the effects of U.S.-imposed firm-specific and
annually-varying anti-dumping and countervailing duties imposed during the
2001:08 — 2006:09 period. The variable takes a value of unity during the latter period
and zero otherwise.

e RECESS 2001: This binary is defined for the economic recession that occurred
during the 2001:03 — 2001:11 period during which the variable is valued at unity and
at zero otherwise,

e RECESS_0709: This binary is defined for the economic recession that occurred
during the 2007:11 — 2009:06 period during which the variable is valued at unity and
at zero otherwise.

ESTIMATION RESULTS

We followed Juselius’ (2006, ch. 6) method of identifying and including extraordinarily
influential effects of month-specific events through specification of “outlier” binaries. When a
potentially includable outlier was identified with a “large” standardized residual, an
appropriately specified variable was included in differenced form as part of Equation 7’s
short run component, and retained if a battery of diagnostics (discussed below) moved
favorably to suggest enhanced specification.*

Table 1’s battery of diagnostic values for the levels VAR (and its unrestricted algebraic
VEC equivalent) before and after efforts focusing on enhanced specification suggest clear
benefits to such efforts.

The trace correlation, a goodness of fit indicator, increased 84% to 0.644. While serial
correlation was initially a likely issue, the finally estimated levels VAR after specification
efforts generated evidence that serial correlation was no longer an issue. While initial
evidence strongly rejected the null of no heteroscedasticity before specification efforts, the

* An observation-specific event was judged as potentially “extraordinary” if its standardized residual exceeded 3.0
in absolute value. Such a rule for outliers was designed based on the effective sample size of 242 observations
using the Bonferoni criterion: INVNORMAL (1-1.025)" where T=242 and INVNORMAL is a function for the
normal distribution that returns the variable for the cumulative density function of a standard normal
distribution (Estima 2007). The Bonferoni variate had an absolute value of 3.7. Having realized that there were
some month-specific events with potentially extraordinary effects with absolute standardized residual values
of about 3.0, we opted to follow recent research and chose a more conservative Bonferoni absolute value
criterion of 3.0 rather than 3.7 (Babula and Rothenberg 2012). Observations with absolute standardized
residual values of 3.0 or more were thereby considered as potential outliers, and we specified an appropriately
defined variable for relevant observations for the sequential estimate procedure. Ten binaries were ultimately
included. Due to space limitation considerations, we do not report the binaries as they are part of the estimated
model’s short run component that is not a focus of this study on long run cointegration relationships. The
binaries are available from the authors on request.
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finally restricted model after specification efforts suggested that heteroscedasticity was likely
not an issue.

Doornik-Hanson (D-H) values test the null that the estimated model’s residuals behave
normally. The D-H values for the estimated system improved notably such that the system of
estimated residuals ultimately achieved strongly normal behavior. The univariate D-H values
suggest that ultimately, evidence at the five percent significance level was insufficient to
reject the null of normally behaving residual estimates for all four equations.

Finally, Table 1 suggests that the finally estimated and statistically adequate model

displayed skewness and kurtosis indicators that fell within literature-established ranges.

Table 1. Mis-specification Tests for the Unrestricted VEC: Before
and after Specification Efforts

Prior efforts at | After efforts at
Test and/or equation Null hypothesis and/ specification specification
or test explanation adequacy adequacy
Trace correlation system-wide goodness of fit: large 0.350 0.644
proportion desirable
LM Test for serial Ho: no serial correlation by lag-2. 29.6 73
correlation (lag 2) Reject for p-values of 0.05 or less (p=0.02) (p=0.97)
ARCH, lag 2 Ho: No heteroscedasticity. Reject forp | 254.1 222.8
values of 0.05 or less (p=0.006) (p=0.13)
Doornik-Hansen test, Ho: modeled system behaves normally. | 15.8 6.7
system-wide normality Reject for p-values below 0.05. (p=0.05) (p=0.57)
Doornik-Hansen test
for normal residuals Ho: equation residuals are normal.
(univariate) Reject for p-values at or below 0.05
5.12 0.70
AQp (p=0.08) (»=0.71)
5.5 4.94
AP (p=0.062) (0.08)
2.02 1.01
APg (p=0.36) (p=.60)
3.01 3.49
AH (p=0.02) (p=0.17)
Skewness(kurtosis) Skewness: ideal is zero; “small”
univariate values absolute value acceptable kurtosis:
ideal is 3.0; acceptable range is 3.0-5.0.
AQ -0.35(3.14) -0.13(2.9)
APp 0.34 (3.49) 0.33 (3.41)
APg 0.02 (3.33) 0.14 (3.06)
AH 0.01 (3.44) -0.036 (3.48)

Cointegration: Testing For and Imposing an Appropriate Reduced Rank

The endogenous variables are shown below to be non-stationary. Juselius (2006, p. 80)
notes that cointegrated variables are driven by common trends and stationary linear
combinations called cointegrating vectors or CVs. The IT-matrix in Equation 8 is a p by p
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(here 4 by 4) matrix equal to the product of the two p by r matrices: p of error correction
estimates that under cointegration combine into r < p stationary CVs of the four individually
non-stationary endogenous variables, and a of adjustment coefficients (beta, alpha estimates,
respectively). Under cointegration, the rank of B’x(t) is reduced despite the non-stationarity of
x(t)’s four series.

The EC space’s reduced rank has traditionally been selected based on the widely-applied
trace tests (Johansen and Juselius 1990). However, Juselius and Toro (2005), Juselius and
Franchi (2007), and Juselius (2006, ch. 8) strongly recommend against a sole reliance on the
trace test results in determining the reduced rank r < p, and in turn the number of
cointegrating vectors that error-correct the system. More specifically, they suggest that
determination of reduced rank (r) should consider other relevant sources of evidence. Thus,
our determination of r is a three-tiered process that considers three sources of relevant
evidence: the traditionally consulted nested trace tests, patterns of a-estimate statistical
significance in relevant CVs, and patterns of characteristic roots in companion matrices
(Juselius 2006, ch. 8).

All three sources of evidence suggest that r could be as low as 1 and as high as 3, with
most evidence suggesting that r is likely 1.

Table 2 provides nested trace test results. A strict reading of these results suggests that
evidence at the five percent significance level is sufficient to reject Table 2’s first three
hypotheses, and is insufficient to reject the fourth, suggesting that r < 3. Given the nested
nature of these four trace tests, they suggest that r = 3. However, evidence only marginally
rejected the third hypothesis that r < 2. Such indicates that the appropriate number of error-
correcting CVs may be smaller than 3, perhaps 2 or less.

The patterns of adjustment coefficient or a-estimate significance further suggest that r is
not only less than 3, but is likely 2 or less. A CV that actively participates in, and that should
be considered part of, the EC mechanism should display a high number of statistically
significant alphas. When many of a CV’s a-estimates are statistically significant, then
including that CV in the EC space is justified since the CV is contributing to the model’s
explanatory power. When many of the a-estimates in a CV are not statistically significant,
Juselius (2006, p. 141-143) notes that including that particular CV in the EC mechanism
would likely not improve the explanatory power of the model; may invalidate inference; and
likely should be excluded from the cointegration space.

The patterns of pseudo-t values on the three CVs from the rank-unrestricted VEC model
suggest that CV1 contributes most to the model’s explanatory power; CV2 contributes the
second-highest levels of explanatory power; and that the third CV contributes little and
should perhaps be excluded from the EC process. This is because of the four a-estimates
generated on the four endogenous variables in each CV: three were significant in CV1; two
were significant in CV2; and only 1 was significant in CV3.” This evidence concerning a-
estimate significance suggests that the EC mechanism should include CV1 and possibly CV2,
and should not include CV3, suggesting that r is 1 or 2 rather than 3.

% Due to space considerations, the alpha estimates, pseudo t-values and other results from the rank-unrestricted VEC
model are not reported, and are available from the authors on request. An o-estimate is deemed statistically
non-zero at the five percent significance level if its absolute pseudo-t value is 2.6 or more (Juselius 2006, p.
142). More specifically for this paper’s model, the following were the statistically significant pseudo-t values
generated by the CVs: -3.1 on Q, -2.7 on P, and 3.6 on Pr in CV1; 6.0 on Q. and 2.8 on Pr in CV2; and -4.4
onH in CV3.
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Table 2. Nested Trace Tests and Test Statistics

Null Hypothesis Trace Value 95% Fractile Result

Rank orr<0 134.84 78.06 Reject null that r <0

Rankorr<1 81.21 57.17 Reject null that r < 1

Rankorr<2 4223 40.13 Reject null that r < 2, although marginally
Rankorr<3 14.61 26.85 Fail to reject thatr <3

Notes: As recommended by Juselius (2006), CATS2—generated fractiles are increased by 8*1.8 or
14.4 to account for the eight previously discussed deterministic variables that were restricted
to lie within the cointegration space. As recommended by Juselius (2006, ch. 8) and
programmed by Dennis (2006), trace values are corrected with Bartlett’s small sample
adjustment.

The third source of rank-relevant evidence is patterns of the characteristic roots under
alternative reduced ranks that suggest r is likely 1 and not 2 or 3. Generally, if the chosen r is
appropriate, then the companion matrix under r should generate (p — r) unit roots, and the (p-
r+1)st root should be substantially below unity. Should the (p — r + 1)st root be near-unity,
then r should likely be reduced (Juselius 2006, ch. 8). The following summary results clearly
suggest thag not only is the appropriate reduced rank less than 2 or 3, it is likely even smaller,
that is =1:

e Under r = 3, there was (p — 1) = (4-3) or 1 unit root with the second root having been
0.96 that is nearly unity. This suggests that r=3 should be reduced.

e Under r = 2, there were (p —r) = (4-2) or two unity roots with the third being 0.83, a
value deemed near enough to unity to suggest that =2 may also be reduced.

e Underr = 1, there were (p —r) = (4-1) or three unit roots with the fourth of 0.68 far
enough below unity to suggest that r=1.

Based on the three sources of above-cited references, we conclude that the EC space’s
reduced rank is more likely 1 than 2 or 3 and we restricted the model for =1 with a single CV
error-correcting the system.

Hypothesis Tests on the Three Unrestricted Cointegrating Relations

One begins with the unrestricted CV (not reported here) that emerged from Johansen and
Juselius® (1990) reduced rank estimation of Equation 7 after having imposed a rank of r=1 on
the EC space. A sequence of hypothesis tests were then conducted on the EC space; the
statistically supported hypotheses were imposed; and the restriction-ridden model was re-
estimated with the Johansen and Juselius’ (1990) reduced rank estimator to generate the
finally restricted cointegrating relation that error-corrects the system and that is presented and
analyzed below. Hypothesis tests on the betas take the form:

B=H*e 9)

¢ Due to space considerations, the authors have summarized and have not reported the companion matrices and
related results under 1, 2, and 3. These results and matrices are available from the authors on request.
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Above, B is a pl by r vector of coefficients included in the cointegration spacc_a,7 and H is
a pl by s design matrix, with s being the number of unrestricted or free beta coefficients. The
¢ is an s by r matrix of unrestricted beta coefficients. The hypothesis test value or statistic is:

2In(Q) = T*Y. [(1-A7) / (1-A)] for i= 1 (=) (10)

Asterisked (non-asterisked) eigenvalues (A;, i = 1) are generated with (without) the tested
restrictions imposed.

The first group consists of four system-based and rank-dependent stationarity (unit root)
tests on the four endogenous variables. Juselius (2006), Juselius and Toro (2005), and
Juselius and Franchi (2007) recommend this approach over univariate unit root tests (e.g.
Dickey-Fuller and Phillips-Perron tests) for such multivariate models as ours. The four unit
root tests were conducted in CATS2 (Dennis 2006). Evidence suggested that all four
endogenous variables are non-stationary or I(1) in logged levels.?

The second group of tested hypotheses contains those that emerged and/or were
suggested by (a) values of the estimated CV’s parameter estimates, (b) market/industry
knowledge and expertise, and (c) economic and econometric theory. It is well known from
Sims (1980) that the unrestricted levels VAR of Equation 6 that underlies Equation 7 is a
reduced form one, where estimated relations reflect a mix of demand- and supply-side
elements without clear structural interpretations. Further, these reduced form relations
encompass an intertwined mix of influences of long run and short run components. The
advantage of dichotomizing Equation 6 into Equation 7’s long run EC component and its
short run component is to permit researchers to focus on the long-run component’s
equilibrium or cointegrating relationships in Equation 8 and to work economic/econometric
theory and market knowledge into Equation 8’s estimation through imposition of statistically
supported restrictions obtained from hypothesis tests. In so doing, long run theoretical
relationships are illuminated and separated from short run influences, and economic
rationalization of Equation 8’s relationships may become clearer than in prior work that did
not so-dichotomize the model. As well, such dichotomization of long run and short run
effects, as well as due diligence in imposing statistically supported hypothesis test
restrictions, may render a finally restricted CV whose parameter values vary from those in
prior literature whose methods did not have the benefit of their models’ dichotomization into
long run and short run components.

The following five restrictions arose from (a) — (c). They were tested and strongly
accepted by the data using Equations 9 and 10 and were imposed on the EC space that was
then re-estimated using Johansen and Juselius’ (1990) reduced rank estimator:’

" The pl equals 12: it is the sum of p=4 endogenous variables plus the eight deterministic variables (previously
presented) that were restricted to lie in the cointegration space.

¥ More specifically, Equation 9 is re-written as B° = [b,¢]. Let p1 be the new dimension of 12 to reflect the four
endogenous variables and the eight deterministic variables restricted to lie in the EC space. The p®isapl by r
or 11 by 3 matrix with one of the variable’s levels restricted to a unit vector and b is a pl by 1 or 12 by 1
vector with a unity value corresponding to the variable the stationarity of which is being tested. The ¢ is a pl
by r-1 matrix that vanishes under r=1 since (r-1) is zero. Given the rank of 1, the test values and parenthetical
p-values for the four stationarity tests are as follows with the null of stationarity rejected for p values below
0.05: 26.3 (0.000008) for Qr; 34.96 (0.00000012) for Pr; 28.2 (0.000003) for Pg; and 28.4 (0.000003) for H.

® The Chi-square test value (5 degrees of freedom) using the Bartlett small sample correction programmed in
CATS?2 by Dennis (2006) was 8.97 and had a p-value of 0.11. Thus, evidence at the five percent significance
level was insufficient to reject the five restrictions.
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e B(PL) =-B(Pp). The reasoning and importance of this test is highlighted below.

e Zero restrictions on the p-estimates on the binaries defined for the Uruguay Round
agreement, the two recessions, and time trend. The issue of multicollinearity of these
non-trend binaries with other temporally concurrent permanent shift binaries
ultimately included in the finally restricted CV [Equation 11] is addressed below as a
reason why the data accepted these restrictions.

What resulted is the finally-restricted cointegrating relationship provided in Equation 11
as a monthly U.S. demand for softwood lumber.

Q. = -1.25%(P, — Pp) +0.30*H - 0.09*NAFTA +0.10*SLA96
(-7.10) (4.3) (-1.34) (1.85)
+0.16*ADCVD +0.19*SLA06 (1)
(3.00) (2.88)

The parenthetical values below the estimated coefficients are pseudo t-values. The
absolute critical value to test that the CV B-estimate is statistically zero is 2.6 at the 5%
significance level (Juselius 2006, p. 142).1°

INTERPRETATION AND USEFULNESS OF U.S.-PRODUCED
SOFTWOOD LUMBER DEMAND MODEL

As expected of a demand relation, the quantity of U.S. softwood lumber (Q) is
negatively related to its price, Pr. As we used a cointegrated VAR approach, our elasticity of
demand is a long-run elasticity. It is thus not surprising that our elasticity estimate (-1.25) is
much higher than those presented in the literature (e.g., Uri and Boyd 1990; Adams et al.
1992).

Perhaps more interestingly, such demand is positively and equally dependent on futures
price that prices a closely-substitutable (and time-differentiated) futures lumber position an
average of 45 days forward. Insofar as data were modeled in natural logarithms, Equation
11°s price difference term implies that U.S. softwood lumber demand depends on the relative
softwood lumber/futures price, such that the emergent demand takes the form of Equation 4.
This implication is reinforced by the term’s notable statistical strength: The term’s pseudo-t
value (-7.1) far exceeds the +2.6 critical values at the 5% significance level (Juselius 2006, p.
142).

At first glance, Equation 11°s P/Pr term may suggest that concurrently equal movements
of the two prices could or would be mutually offsetting with no effect on softwood lumber
demand. However, such a precise offset is unlikely, since the modeled softwood lumber and
futures prices do not define (and are not intended to define) the CME Group’s Random
Length Lumber contract’s undetlying basis. Rather, Py is a nationally-surveyed PPI intended
to capture national softwood lumber price trends, and is not the contract-specific cash price

19 Juselius (2006, p. 142) notes that these pseudo-t values are not Student t-values and as a result, the critical values
for the hypothesis concerning Equation (11)’s p-estimates are not the same as Student-t critical values.
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used to settle the CME Group’s contract that in turn generates Pr. And while the two prices
are expected to qualitatively move in tandem, there is no hard expectation that a related event
or policy shock should generate equal percent changes in the two prices.

Nonetheless, softwood lumber priced concurrently at its own price and priced forwardly
at Pp are highly substitutable products that are differentiated by time. The above
lumber/futures price relation results are therefore consistent with U.S. softwood lumber
demand that is negatively related to its own current price (Pr) and positively related to the
price of its close substitute priced forwardly at Pr. Hence, Equation 11 is that log linear form
of the previously discussed Cobb-Douglas demand in Equation 3, and more specifically
Equation 4 where demand is a function of the P /P ratio.

Risk-managing activity, including hedging, is likely under Equation 11’s P/Pg price
term. As softwood lumber price rises relative to futures price, demand for softwood lumber at
the current pricing point, Py, becomes relatively more expensive than at the futures pricing
point, Pg, at an average time-stamp of 45 days forward. As P1/Pr consequently rises, there is a
willingness of some agents to postpone demand and allocate some of their total demand
towards the relatively cheaper futures pricing point some 45 days forward through taking
positions with the CME Group’s softwood lumber contract.

Likewise, as softwood price declines relative to futures price, demand for lumber at the
current pricing point, Py, becomes relatively cheaper than at the P point some 45 days ahead.
As P/Pr declines, there is a P;-induced increase in current demand that may be offset by a
decline in demand at the futures price 45 days ahead, as agents hedge through position-taking
on the CME Group contract. Finally, it is important to note that policies or events that
induced effects on Pg have similarly reasoned effects on softwood lumber demand through
changes in the relative softwood lumber/futures price.

Observed data associated with notably pronounced movements in lumber price, futures
price, relative P1/Pr price, and CME Group lumber contract trading volumes seem consistent
with the above reasoning and analysis of Equation 11°s lumber/futures price term. One well-
known instance occurred during the 10 months ending March, 1993 when softwood lumber
rose 43% and futures price soared even more, such that the softwood lumber price ratio fell
by about 20%."!

As demonstrated in Figure 1, the resulting 20% drop in relative lumber/futures price
rendered demand for U.S. softwood lumber cheaper at the current P pricing point than at P,
the pricing point some 45-days forward. This relative price ratio decline was concurrently met
with a notable 38.3% escalation in the trading volume of CME Group’s random length
lumber contract as reflected by the monthly averages in the contract’s daily trades,
particularly after November, 1992.

Although Figure 1 provides daily trades (both long and short positions combined) and
does not provide levels of open interest, this rise in trading activity in response to sharp
movements in the relative lumber/futures price ratio likely included hedging activity along
with some speculative trading.

!! Reasons for the pronounced lumber price increases included enhanced lumber demand from a then-recovering
economy’s increased residential construction, a reduction in timber supplies from Pacific Northwest forests
due to environmental concerns, and from allegations of heightened levels of trader speculation (Gorte 1993;
Bianco 2012).
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Figure 1. Relationship between Lumber Futures Trading Volumes and the Relative Softwood
Lumber/Futures Price: 1992:06 — 1993:04.

Estimated Effects of Specific Policies/Events

Since this study’s cointegrated VAR model was estimated in natural logarithms (logs),
interpreting coefficient estimates generated by binary (or dummy) variables follow Halvorsen
and Palmquist’s (1980) well-known method (Babula and Rothenberg 2012). The Halvorsen
and Palmquist (HP) values calculated for the P-estimates generated by binary variables
indicate, on average, the percentage by which the dependent variable (Qy in Equation 11) is
above (for positive -estimates) or below (for negative p-estimates) during the binary’s period
of definition than during sub-periods of the sample when the binary’s defining event was not
in force.”? The HP values provide an important avenue of the cointegrated VAR model by
which policy-analytic results may be obtained.

Recall that the seven permanent shift binary variables that were initially restricted to lie
in the EC space had the following definition periods: NAFTA, 1994:01 — 2012:05%;
URUGUAY, 1995:01 — 2012:05*; SLA96, 1996:04 — 2001:03; SLA06, 2006:10 — 2012:05%;
ADCVD, 2001:08 — 2006:09; RECESS_2001, 2001:03 — 2001:11; and RECESS_0709,
2007:11 — 2009:06."° These seven sub-periods of binary variable definition clearly overlap,

12 A5 noted in Halvorsen and Palmquist (1980), for log/log estimations such as ours, one takes “e,” the base of the
natural logarithm; raises it to the power of the binary’s p-estimate; subtracts 1.0; and then multiplies the result
by 100 to render he noted HP value for that estimated coefficient.

13 The periods of binary variable definition ending with May, 2012 are asterisked. May, 2012 values were the most
recent available at the point of model estimation, and this date serves as the end of the estimation period and is
not the end of the subsample for which the binaries are defined.
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and in some cases, entire sub-periods of binary definition are included in those of other
binaries.

As such, these initially included permanent shift binaries likely generated highly collinear
coefficients, insofar as all seven coefficients were picking-up concurrent influences. The most
obvious example involved the sub-periods defined for NAFTA (1994:01 onward) and
URUGUAY (1995:01 onward): B(NAFTA) initially captured all influences captured by
B(URUGUAY).

Such collinearity among binaries is likely responsible for the acceptance of zero
restrictions on the beta estimates for URUGUAY and the two recessions during
implementation of the hypothesis tests, and perhaps for the seemingly low significance levels
suggested by low absolute pseudo-t values on Equation 11°s NAFTA and SLA96 coefficients
that may well, in reality, be statistically non-zero.'* Of the four remaining permanent shift
binaries that the hypothesis test results suggested should remain, the ADCVD and SLA06
variables generated positive and significant coefficients. Yet NAFTA and SLA96 generated
pseudo t values that suggested insignificance. We decided to retain NAFTA to compare with
results of other commodity trade studies (e.g., Babula and Rothenberg 2012) where it is
shown to be significant and to retain SLA96 to compare with results of other studies on
softwood lumber (e.g. Zhang 2006). And as Zhang (2006) notes, including the final year of
SLA96 which were expected to expire might have caused the insignificance.

Equation 11°s ultimately included four permanent shift binaries generated B-estimates
that, through HP values, suggested the following effects on U.S. demand for domestically
produced lumber:

e Implementation of NAFTA resulted in U.S. demand levels for softwood lumber that
were, on average, not significantly different from the treaty’s 1994 implementation.
This is consistent with our expectation because softwood lumber was excluded from
the U.S.-Canada Free Trade Agreement which became NAFTA (Zhang 2007).

e Similar to Zhang (2006), the first SLA in 1996 resulted in demand for U.S. softwood
lumber that was, on average, 10% higher than when SLA96 was not in force.

e The U.S. antidumping and countervailing duty orders that were imposed on certain
imports of Canadian-sourced softwood lumber appeared effective in augmenting
U.S. demand for its own softwood lumber. The HP value on B(ADCVD) suggests
that such demand was, on average, 17.4% higher than during the sample periods
when the orders were not in force. This finding is consistent with Nagubadi and
Zhang (forthcoming).

o The second softwood lumber agreement established in 2006 appeared effective
insofar as HP value on B(SLAO06) suggests that U.S. demand for its own lumber was
about 21% higher than sub-samples prior to the agreement’s implementation. We
must relegate to future research how much of a net effect this is, insofar as
RECESS_0709’s defined sub-period falls entirely within that of the SLAO6. This
finding is consistent with Nagubadi and Zhang (forthcoming).

' More specifically, the entire URUGUAY sub-period is enveloped into that of NAFTA, The RECESS_0709 sub-
period is included completely in the sub-period of SLA06, while RECESS 2001 overlaps partially with the
sub-periods of ADCVD. Further, for the four coefficients ultimately included in Equation 11, the sub-period of
ADCVD (2001:08 - 2006:09) overlays with the defined sub-period of NAFTA (1994:01 —2012:05).
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CONCLUSION

In this paper we use the cointegration approach to establish a demand model for U.S.
produced softwood lumber that displays noticeable statistical strength. Our model is
consistent with economic theory and robust under various diagnostic tests. Our results show
that the demand for U.S.-produced lumber responds to current lumber prices, futures lumber
prices, and housing starts. Further, various trade restriction measures on Canadian lumber
imports have been successful and have had positive impacts on demand for U.S.-produced
softwood lumber.

The results suggest that demand for U.S.-produced softwood lumber is related to a ratio
of current to futures prices as noted within the Cobb-Douglas form in Equations 3 and 4, or
alternatively, to both current and futures prices but in opposite ways. Softwood lumber priced
currently and forwardly can be taken as closely substitutable lumber products differentiated
by time. U.S. producers could use this relationship to manage price risks and to adjust their
short-run production plans. Similarly, lumber buyers could hedge their consumption
activities. Finally, the forest economist profession, which has not paid much attention to
futures markets in the literature, may glean substantial amounts of useful information and
insights on market relationships by studying lumber prices in the futures market -- for
example, relationships among the lumber/futures price ratio and contract trading volumes
from hedging and from speculative trades.
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