On the radius of self-repellent fractional Brownian motion


Le Chen

le.chen@auburn.edu
Department of Mathematics and Statistics
Auburn University

Seminars on Analysis and Stochastic Analysis (SASA)
Auburn, Alabama, Aug. 28, 2024

JSP paper
SpringerLink
Sefika Kuzgun

Sefika Kuzgun

Carl Mueller

Carl Mueller

Panqiu Xia

Panqiu Xia

NSF

DMS-Probability: No. 2246850
(2023-2026)

Simons

No. 959981
(2022-2027)

Self Avoid Random walk on $\mathbb{Z}^2$

Number of Self Avoid Random walks

on $\mathbb{Z}^d$

\[ c_n ∼ A μ^n n^{\gamma -1} \]

$d$ $1$ $2$ $3$ $4$ $5$
$γ$ $1$ $\frac{43}{32}$ $1.16...$ $1-$ $1$

Connective constant $μ$

Conjectured (for square lattice with \(d=2\)): \(μ = 2.638 158 530 31(3)\).

Connective constant $μ$

Conjectured (for square lattice with \(d=2\)): \(μ = 2.638 158 530 31(3)\).

Only known case: \(μ = \sqrt{2+\sqrt{2}}\) for hexagonal lattice.

JSP paper
Paper link

Mean-square displacement

(end-to-end)

\[ \mathbb{E}\left(W(n)^2\right) ∼ D n^{2ν} \]

$d$ $1$ $2$ $3$ $4$ $5$
$ν$ $1$ $3/4$ $0.588...$ $1/2 -$ $1/2$

Ballistic
Diffusive

Flory Exponent $\nu$

\( \mathbb{E}\left(W(n)^2\right) ∼ D n^{2ν} \)

\[ ν_F = \frac{3}{d+2} \]
$d$ $1$ $2$ $3$ $4$ $5$
$ν$ $1$ $3/4$ $0.588...$ $1/2 -$ $1/2$
$ν_F$ $1$ $3/4$ $3/5$ $1/2$ $1/2$

Universality

Universality

Both the critical exponents $γ$ and $ν$ are universal.

Critical exponents $γ$ and $ν$ depend on

  • Dimension
  • Noise structure (BM or fBM)

But they do not depend on

  • Lattice structure (square, triangular, or hexagonal...)
  • Discrete Lattice or continuous space
  • Strict self avoiding or self repellent
  • Definitions of displacements
  • ......

Models with the same critical exponents are in the same

Universality class

Fractional Brownian Motion (fBM)

Let $\left\{ B^H_t\right\}_{t\ge0}$ be a fBM with Hurst index $H \in (0,1)^d$, taking values in $\mathbb{R}^d$. That is, $B^H_t=\left(B^{H_1,1}_t,\dots,B^{H_d,d}_t\right)$ where $\left(B^{H_i,i}_\cdot\right)_{i=1}^{d}$ are independent one-dimensional fBMs with Hurst index $H$. Thus, each $B^{H_i,i}_\cdot$ is a centered Gaussian process with covariance

\begin{equation*} \mathbb{E}\left[B^{H_i,i}_s B^{H_i,i}_t\right]=\frac{1}{2}\left(t^{2H_i}+s^{2H_i}-|t-s|^{2H_i}\right). \end{equation*}

self-repellent Random Walks/fBMs

\begin{align*} Q_n^\lambda(ω) = \frac{1}{Z_n(λ)} \prod_{0\le s< t\le n } \left(1- λ v_{st}(ω)\right), \quad λ\in(0,1] \end{align*}

$λ =0$: Simple symmetric RW
$λ =1$: self-avoiding RW
$λ \in(0,1)$: self-repellent RW

Alternative/more common penalty

\begin{align*} Q_n^β(ω) = \frac{1}{Z_n(β)} \prod_{0\le s< t\le n } e^{- β v_{st}(ω)}, \quad β>0. \end{align*}

Continuous time

Let $d W^T$ be the Wiener measure and the Edwards model:

\begin{align*} dμ^T = \frac{1}{Z^T} e^{- β J} d W^T \end{align*}

where $J$ refers to the local time

\begin{align*} J(ω) = \int_0^T\int_0^T δ\left(ω(t)-ω(s)\right) ds dt. \end{align*}

No square-integrable when

\[ d H \ge 1 \]
[16] Y. Hu and D. Nualart. Renormalized self-intersection local time for fractional Brownian motion. Ann. Probab., 33(3):948--983, 2005. [ bib | DOI | http ]
[21] J. Rosen. The intersection local time of fractional Brownian motion in the plane. J. Multivariate Anal., 23(1):37--46, 1987. [ bib | DOI | http ]

Occupation time instead of local time

We define the occupation time as follows: \begin{align*} L_T(y) & := \left|\left\{t\in[0,T]: B^H_t\in\mathbf{O}_1(y)\right\}\right| \\ & = \int_0^T \mathbf{1}_{\mathbf{O}_1(y)} \left(B^H_t\right) d t, \end{align*} where $|S|$ denotes the Lebesgue measure of the set $S$, and $\mathbf{O}_r(y)$ is the open ball in $\mathbb{R}^d$, centered at $y$, of radius $r > 0$.

Define \begin{equation}\label{E:ET} \mathcal{E}_T := \exp\left(-\beta\int_{\mathbb{R}^d}L_T(z)^2 d z\right) \end{equation} and for an event $A$, let \begin{equation}\label{E:Qt} \mathbb{Q}_T(A) := \frac{1}{Z_T}\mathbb{E}^{\mathbb{P}_T}\left[\mathbf{1}_A\mathcal{E}_T\right], \hspace{1cm} Z_T :=\mathbb{E}^{\mathbb{P}_T}\left[\mathcal{E}_T\right]. \end{equation} Then, under probability measure $\mathbb{Q}_T$, $\left\{B^H_t \colon 0\leq t \leq T\right\}$ is a self-repellent fBm.

Radius of gyration

\begin{gather*} R_T := \left[\frac{1}{T}\int_{0}^{T}\left|B_t^H-\overline{B}_T^H\right|^2 d t\right]^{1/2} \quad \text{with} \\ \overline{B}_T^H := \frac{1}{T}\int_{0}^{T}B_t^H d t. \end{gather*}
[11] M. Fixman. Radius of gyration of polymer chains. J. Chem. Phys., 36(2):306--310, 1962-01. [ bib | DOI | arXiv | http ]

Conjecture for self repellent fractional BM

\[ ν = \frac{2(1+H)}{d+2} \] Sefika Kuzgun
[5] W. Bock, J. B. Bornales, C. O. Cabahug, S. Eleutério, and L. Streit. Scaling properties of weakly self-avoiding fractional Brownian motion in one dimension. J. Stat. Phys., 161(5):1155--1162, 2015. [ bib | DOI | http ]

Theorem (L. Kuzgun, Mueller, Xia 24)

Let $B^H$ be a $1$-d fBm with $H\in (0,1)$. Then, $∀ \beta > 0$, $∃ T_{\beta} \geq e$, $C_*$, $C^*$, $C> 0$ s.t. $∀ T \geq T_{\beta}$: \begin{gather*} \mathbb{Q}_T \left( C_* \beta^{1/3} T^{\frac{2(1+H)}{3}} \leq R_T \leq C^* \beta^{1/3} T^{\frac{2(1+H)}{3}} \right) \\ \ge 1 - 2 \exp\left(- C \beta^{2/3} T^{\frac{2(2-H)}{3}}\right). \end{gather*}

Theorem (L. Kuzgun, Mueller, Xia 24)

Let $B^H$ be a $1$-d fBm with $H\in (0,1)$. Then, $∀ \beta > 0$, $∃ T_{\beta} \geq e$, $C_*$, $C^*$, $C> 0$ s.t. $∀ T \geq T_{\beta}$: \begin{gather*} \mathbb{Q}_T \left( C_* \beta^{1/3} T^{\frac{2(1+H)}{3}} \leq R_T \leq C^* \beta^{1/3} T^{\frac{2(1+H)}{3}} \right) \\ \ge 1 - 2 \exp\left(- C \beta^{2/3} T^{\frac{2(2-H)}{3}}\right). \end{gather*}
Confirming for $d=1$: \( ν = \frac{2(1+H)}{d+2}\)
  • $d=1$: Solved
  • $d=2,3,4$: Completely open including $H=1/2$
  • $d \ge 5$:
    • $H=1/2$: Solved, using the Lace expansion
    • $H \ne 1/2$: Open, no Markov property

Ideas in the proof

Aim: \begin{align}\label{E_:stg-0} \mathbb{Q}_T \left(a \leq R_T \leq b\right) \geq 1 - 2 \exp (- c), \end{align}

It suffices to show that \begin{align*} \mathbb{Q}_T (R_T \leq a) & = \frac{\mathbb{E}^{\mathbb{P}_T} \left[\mathbf{1}_{\{R_T \leq a\}} \mathcal{E}_T\right]}{Z_T} \leq \exp (-c), \\ \mathbb{Q}_T (R_T \geq b) & = \frac{\mathbb{E}^{\mathbb{P}_T} \left[\mathbf{1}_{\{R_T \geq b\}} \mathcal{E}_T\right]}{Z_T} \leq \exp (-c). \end{align*}

Hence, we need to show that \begin{gather*} Z_T \geq \exp (- c), \\ \mathbb{E}^{\mathbb{P}_T} \left[\mathbf{1}_{\{R_T \leq a\}} \mathcal{E}_T\right] \leq \exp (- 2c),\\ \mathbb{E}^{\mathbb{P}_T} \left[\mathbf{1}_{\{R_T \geq b\}} \mathcal{E}_T\right] \leq \exp (- 2 c). \end{gather*} Recall \begin{align*} \mathcal{E}_T := \exp\left(-\beta\int_{\mathbb{R}^d}L_T(z)^2 d z\right) \end{align*}

Girsanov formula for fBm

Large deviation for Gaussian process

Lots of computations

Thank you!