References.bib

@book{adler.taylor:07:random,
  author = {Adler, Robert J. and Taylor, Jonathan E.},
  publisher = {Springer, New York},
  year = {2007},
  isbn = {978-0-387-48112-8},
  pages = {xviii+448},
  series = {Springer Monographs in Mathematics},
  title = {Random fields and geometry}
}
@incollection{bauerschmidt.duminil-copin.ea:12:lectures,
  author = {Bauerschmidt, Roland and Duminil-Copin, Hugo and Goodman, Jesse and Slade, Gordon},
  publisher = {Amer. Math. Soc., Providence, RI},
  booktitle = {Probability and statistical physics in two and more dimensions},
  year = {2012},
  pages = {395--467},
  series = {Clay Math. Proc.},
  title = {Lectures on self-avoiding walks},
  volume = {15}
}
@book{biagini.hu.ea:08:stochastic,
  author = {Biagini, Francesca and Hu, Yaozhong and {Ø}ksendal, Bernt and Zhang, Tusheng},
  publisher = {Springer-Verlag London, Ltd., London},
  url = {https://doi.org/10.1007/978-1-84628-797-8},
  year = {2008},
  doi = {10.1007/978-1-84628-797-8},
  isbn = {978-1-85233-996-8},
  pages = {xii+329},
  series = {Probability and its Applications (New York)},
  title = {Stochastic calculus for fractional {B}rownian motion and applications}
}
@article{biswas.cherayil:95:dynamics,
  author = {Biswas, Parbati and Cherayil, Binny J.},
  url = {https://doi.org/10.1021/j100002a052},
  year = {1995},
  doi = {10.1021/j100002a052},
  eprint = {https://doi.org/10.1021/j100002a052},
  journal = {J. Phys. Chem.},
  number = {2},
  pages = {816--821},
  title = {Dynamics of Fractional Brownian Walks},
  volume = {99}
}
@article{bock.bornales.ea:15:scaling,
  author = {Bock, Wolfgang and Bornales, Jinky B. and Cabahug, Cresente O. and Eleutério, Samuel and Streit, Ludwig},
  url = {https://doi.org/10.1007/s10955-015-1368-9},
  year = {2015},
  doi = {10.1007/s10955-015-1368-9},
  issn = {0022-4715},
  journal = {J. Stat. Phys.},
  number = {5},
  pages = {1155--1162},
  title = {Scaling properties of weakly self-avoiding fractional {B}rownian motion in one dimension},
  volume = {161}
}
@article{bolthausen:90:on,
  author = {Bolthausen, Erwin},
  url = {https://doi.org/10.1007/BF01198167},
  year = {1990},
  doi = {10.1007/BF01198167},
  issn = {0178-8051},
  journal = {Probab. Theory Related Fields},
  number = {4},
  pages = {423--441},
  title = {On self-repellent one-dimensional random walks},
  volume = {86}
}
@incollection{bornales.oliveira.ea:13:self-repelling,
  author = {Bornales, Jinky and Oliveira, Maria João and Streit, Ludwig},
  publisher = {World Sci. Publ., Hackensack, NJ},
  url = {https://doi.org/10.1142/9789814460026\_0033},
  booktitle = {Quantum bio-informatics {V}},
  year = {2013},
  doi = {10.1142/9789814460026\_0033},
  pages = {389--401},
  series = {QP--PQ: Quantum Probab. White Noise Anal.},
  title = {Self-repelling fractional {B}rownian motion---a generalized {E}dwards model for chain polymers},
  volume = {30}
}
@article{brydges.spencer:85:self-avoiding,
  author = {Brydges, David and Spencer, Thomas},
  url = {http://projecteuclid.org/euclid.cmp/1103941982},
  year = {1985},
  issn = {0010-3616},
  journal = {Comm. Math. Phys.},
  number = {1-2},
  pages = {125--148},
  title = {Self-avoiding walk in {$5$} or more dimensions},
  volume = {97}
}
@article{domb.joyce:72:cluster,
  author = {Domb, C and Joyce, G S},
  url = {https://dx.doi.org/10.1088/0022-3719/5/9/009},
  year = {1972-05},
  doi = {10.1088/0022-3719/5/9/009},
  journal = {J. Phys. C: Solid State Phys.},
  number = {9},
  pages = {956},
  title = {Cluster expansion for a polymer chain},
  volume = {5}
}
@article{edwards:65:statistical,
  author = {Edwards, S. F.},
  year = {1965},
  journal = {Proc. Phys. Soc.},
  pages = {613--624},
  title = {The statistical mechanics of polymers with excluded volume},
  volume = {85}
}
@article{fixman:62:radius,
  author = {Fixman, Marshall},
  url = {https://doi.org/10.1063/1.1732501},
  year = {1962-01},
  doi = {10.1063/1.1732501},
  eprint = {https://pubs.aip.org/aip/jcp/article-pdf/36/2/306/11125538/306\_1\_online.pdf},
  issn = {0021-9606},
  journal = {J. Chem. Phys.},
  number = {2},
  pages = {306--310},
  title = {Radius of Gyration of Polymer Chains},
  volume = {36}
}
@article{greven.hollander:93:variational,
  author = {Greven, Andreas and den Hollander, Frank},
  url = {http://links.jstor.org/sici?sici=1050-5164(199311)3:4<1067:AVCOTS>2.0.CO;2-Q\&origin=MSN},
  year = {1993},
  issn = {1050-5164},
  journal = {Ann. Appl. Probab.},
  number = {4},
  pages = {1067--1099},
  title = {A variational characterization of the speed of a one-dimensional self-repellent random walk},
  volume = {3}
}
@article{grothaus.oliveira.ea:11:self-avoiding,
  author = {Grothaus, Martin and Oliveira, Maria João and da Silva, José Luı́s and Streit, Ludwig},
  url = {https://doi.org/10.1007/s10955-011-0344-2},
  year = {2011},
  doi = {10.1007/s10955-011-0344-2},
  issn = {0022-4715},
  journal = {J. Stat. Phys.},
  number = {6},
  pages = {1513--1523},
  title = {Self-avoiding fractional {B}rownian motion---the {E}dwards model},
  volume = {145}
}
@article{hara.slade:91:critical,
  author = {Hara, Takashi and Slade, Gordon},
  url = {https://doi.org/10.1090/S0273-0979-1991-16085-4},
  year = {1991},
  doi = {10.1090/S0273-0979-1991-16085-4},
  issn = {0273-0979},
  journal = {Bull. Amer. Math. Soc. (N.S.)},
  number = {2},
  pages = {417--423},
  title = {Critical behaviour of self-avoiding walk in five or more dimensions},
  volume = {25}
}
@article{hara.slade:92:self-avoiding,
  author = {Hara, Takashi and Slade, Gordon},
  url = {http://projecteuclid.org/euclid.cmp/1104250528},
  year = {1992},
  issn = {0010-3616},
  journal = {Comm. Math. Phys.},
  number = {1},
  pages = {101--136},
  title = {Self-avoiding walk in five or more dimensions. {I}. {T}he critical behaviour},
  volume = {147}
}
@article{hu.nualart:05:renormalized,
  author = {Hu, Yaozhong and Nualart, David},
  url = {https://doi.org/10.1214/009117905000000017},
  year = {2005},
  doi = {10.1214/009117905000000017},
  issn = {0091-1798},
  journal = {Ann. Probab.},
  number = {3},
  pages = {948--983},
  title = {Renormalized self-intersection local time for fractional {B}rownian motion},
  volume = {33}
}
@article{madras:14:lower,
  author = {Madras, Neal},
  url = {https://doi.org/10.4153/CMB-2012-022-6},
  year = {2014},
  doi = {10.4153/CMB-2012-022-6},
  issn = {0008-4395},
  journal = {Canad. Math. Bull.},
  number = {1},
  pages = {113--118},
  title = {A lower bound for the end-to-end distance of the self-avoiding walk},
  volume = {57}
}
@book{madras.slade:93:self-avoiding,
  author = {Madras, Neal and Slade, Gordon},
  publisher = {Birkhäuser Boston, Inc., Boston, MA},
  year = {1993},
  isbn = {0-8176-3589-0},
  pages = {xiv+425},
  series = {Probability and its Applications},
  title = {The self-avoiding walk}
}
@article{mueller.neuman:23:radius,
  author = {Mueller, Carl and Neuman, Eyal},
  url = {http://arXiv.org/abs/2306.01537},
  year = {2023-06},
  journal = {preprint arXiv:2306.01537},
  title = {The radius of a self-repelling star polymer}
}
@article{norros.valkeila.ea:99:elementary,
  author = {Norros, Ilkka and Valkeila, Esko and Virtamo, Jorma},
  url = {https://doi.org/10.2307/3318691},
  year = {1999},
  doi = {10.2307/3318691},
  issn = {1350-7265},
  journal = {Bernoulli},
  number = {4},
  pages = {571--587},
  title = {An elementary approach to a {G}irsanov formula and other analytical results on fractional {B}rownian motions},
  volume = {5}
}
@article{rosen:87:intersection,
  author = {Rosen, Jay},
  url = {https://doi.org/10.1016/0047-259X(87)90176-X},
  year = {1987},
  doi = {10.1016/0047-259X(87)90176-X},
  issn = {0047-259X},
  journal = {J. Multivariate Anal.},
  number = {1},
  pages = {37--46},
  title = {The intersection local time of fractional {B}rownian motion in the plane},
  volume = {23}
}
@article{slade:19:self-avoiding,
  author = {Slade, Gordon},
  url = {https://doi.org/10.1098/rspa.2018.0549},
  year = {2019},
  doi = {10.1098/rspa.2018.0549},
  issn = {1364-5021},
  journal = {Proc. A.},
  number = {2221},
  pages = {20180549,21},
  title = {Self-avoiding walk, spin systems and renormalization},
  volume = {475}
}