| [1] | R. J. Adler and J. E. Taylor. Random fields and geometry. Springer Monographs in Mathematics. Springer, New York, 2007. [ bib ] | 
| [2] | R. Bauerschmidt, H. Duminil-Copin, J. Goodman, and G. Slade. Lectures on self-avoiding walks. In Probability and statistical physics in two and more dimensions, volume 15 of Clay Math. Proc., pages 395--467. Amer. Math. Soc., Providence, RI, 2012. [ bib ] | 
| [3] | F. Biagini, Y. Hu, B. Øksendal, and T. Zhang. Stochastic calculus for fractional Brownian motion and applications. Probability and its Applications (New York). Springer-Verlag London, Ltd., London, 2008. [ bib | DOI | http ] | 
| [4] | P. Biswas and B. J. Cherayil. Dynamics of fractional brownian walks. J. Phys. Chem., 99(2):816--821, 1995. [ bib | DOI | arXiv | http ] | 
| [5] | W. Bock, J. B. Bornales, C. O. Cabahug, S. Eleutério, and L. Streit. Scaling properties of weakly self-avoiding fractional Brownian motion in one dimension. J. Stat. Phys., 161(5):1155--1162, 2015. [ bib | DOI | http ] | 
| [6] | E. Bolthausen. On self-repellent one-dimensional random walks. Probab. Theory Related Fields, 86(4):423--441, 1990. [ bib | DOI | http ] | 
| [7] | J. Bornales, M. J. Oliveira, and L. Streit. Self-repelling fractional Brownian motion---a generalized Edwards model for chain polymers. In Quantum bio-informatics V, volume 30 of QP--PQ: Quantum Probab. White Noise Anal., pages 389--401. World Sci. Publ., Hackensack, NJ, 2013. [ bib | DOI | http ] | 
| [8] | D. Brydges and T. Spencer. Self-avoiding walk in 5 or more dimensions. Comm. Math. Phys., 97(1-2):125--148, 1985. [ bib | http ] | 
| [9] | C. Domb and G. S. Joyce. Cluster expansion for a polymer chain. J. Phys. C: Solid State Phys., 5(9):956, 1972-05. [ bib | DOI | http ] | 
| [10] | S. F. Edwards. The statistical mechanics of polymers with excluded volume. Proc. Phys. Soc., 85:613--624, 1965. [ bib ] | 
| [11] | M. Fixman. Radius of gyration of polymer chains. J. Chem. Phys., 36(2):306--310, 1962-01. [ bib | DOI | arXiv | http ] | 
| [12] | A. Greven and F. den Hollander. A variational characterization of the speed of a one-dimensional self-repellent random walk. Ann. Appl. Probab., 3(4):1067--1099, 1993. [ bib | http ] | 
| [13] | M. Grothaus, M. J. Oliveira, J. L. da Silva, and L. Streit. Self-avoiding fractional Brownian motion---the Edwards model. J. Stat. Phys., 145(6):1513--1523, 2011. [ bib | DOI | http ] | 
| [14] | T. Hara and G. Slade. Critical behaviour of self-avoiding walk in five or more dimensions. Bull. Amer. Math. Soc. (N.S.), 25(2):417--423, 1991. [ bib | DOI | http ] | 
| [15] | T. Hara and G. Slade. Self-avoiding walk in five or more dimensions. I. The critical behaviour. Comm. Math. Phys., 147(1):101--136, 1992. [ bib | http ] | 
| [16] | Y. Hu and D. Nualart. Renormalized self-intersection local time for fractional Brownian motion. Ann. Probab., 33(3):948--983, 2005. [ bib | DOI | http ] | 
| [17] | N. Madras. A lower bound for the end-to-end distance of the self-avoiding walk. Canad. Math. Bull., 57(1):113--118, 2014. [ bib | DOI | http ] | 
| [18] | N. Madras and G. Slade. The self-avoiding walk. Probability and its Applications. Birkhäuser Boston, Inc., Boston, MA, 1993. [ bib ] | 
| [19] | C. Mueller and E. Neuman. The radius of a self-repelling star polymer. preprint arXiv:2306.01537, 2023-06. [ bib | http ] | 
| [20] | I. Norros, E. Valkeila, and J. Virtamo. An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions. Bernoulli, 5(4):571--587, 1999. [ bib | DOI | http ] | 
| [21] | J. Rosen. The intersection local time of fractional Brownian motion in the plane. J. Multivariate Anal., 23(1):37--46, 1987. [ bib | DOI | http ] | 
| [22] | G. Slade. Self-avoiding walk, spin systems and renormalization. Proc. A., 475(2221):20180549,21, 2019. [ bib | DOI | http ] |