Bibliography

Bibliography#

[AF03a]

Mark J. Ablowitz and Athanassios S. Fokas. Complex variables: introduction and applications. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, second edition, 2003. ISBN 0-521-53429-1. URL: https://doi.org/10.1017/CBO9780511791246, doi:10.1017/CBO9780511791246.

[AF03b]

Robert A. Adams and John J. F. Fournier. Sobolev spaces. Volume 140 of Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam, second edition, 2003. ISBN 0-12-044143-8.

[AT07]

Robert J. Adler and Jonathan E. Taylor. Random fields and geometry. Springer Monographs in Mathematics. Springer, New York, 2007. ISBN 978-0-387-48112-8.

[ARZ00]

Hélène Airault, Jiagang Ren, and Xicheng Zhang. Smoothness of local times of semimartingales. C. R. Acad. Sci. Paris Sér. I Math., 330(8):719–724, 2000. URL: https://doi.org/10.1016/S0764-4442(00)00251-2, doi:10.1016/S0764-4442(00)00251-2.

[AR09]

Keiiti Aki and Paul G. Richards. Quantitative seismology. Theory and Methods, pages 1–700, 2009.

[ABD95]

S. Albeverio, Z. Brzezniak, and L. Dabrowski. Fundamental solution of the heat and Schrödinger equations with point interaction. J. Funct. Anal., 130(1):220–254, 1995. URL: https://doi.org/10.1006/jfan.1995.1068, doi:10.1006/jfan.1995.1068.

[AGHKH05]

S. Albeverio, F. Gesztesy, R. Høegh-Krohn, and H. Holden. Solvable models in quantum mechanics. AMS Chelsea Publishing, Providence, RI, second edition, 2005. ISBN 0-8218-3624-2. With an appendix by Pavel Exner. URL: https://doi.org/10.1090/chel/350, doi:10.1090/chel/350.

[ACQ11]

Gideon Amir, Ivan Corwin, and Jeremy Quastel. Probability distribution of the free energy of the continuum directed random polymer in $1+1$ dimensions. Comm. Pure Appl. Math., 64(4):466–537, 2011. URL: https://doi.org/10.1002/cpa.20347, doi:10.1002/cpa.20347.

[Ass99]

Sigurd Assing. Comparison of systems of stochastic partial differential equations. Stochastic Process. Appl., 82(2):259–282, 1999. URL: https://doi.org/10.1016/S0304-4149(99)00031-9, doi:10.1016/S0304-4149(99)00031-9.

[AM03]

Sigurd Assing and Ralf Manthey. Invariant measures for stochastic heat equations with unbounded coefficients. Stochastic Process. Appl., 103(2):237–256, 2003. URL: https://doi.org/10.1016/S0304-4149(02)00211-9, doi:10.1016/S0304-4149(02)00211-9.

[AJM21]

Siva Athreya, Mathew Joseph, and Carl Mueller. Small ball probabilities and a support theorem for the stochastic heat equation. Ann. Probab., 49(5):2548–2572, 2021. URL: https://doi.org/10.1214/21-aop1515, doi:10.1214/21-aop1515.

[BCM22]

Raluca Balan, Le Chen, and Yiping Ma. Parabolic Anderson model with rough noise in space and rough initial conditions. Electron. Commun. Probab., 27:Paper No. 65, 12, 2022. URL: https://doi.org/10.1214/22-ecp506, doi:10.1214/22-ecp506.

[BC18]

Raluca M. Balan and Le Chen. Parabolic Anderson model with space-time homogeneous Gaussian noise and rough initial condition. J. Theoret. Probab., 31(4):2216–2265, 2018. URL: https://doi.org/10.1007/s10959-017-0772-2, doi:10.1007/s10959-017-0772-2.

[BCC22]

Raluca M. Balan, Le Chen, and Xia Chen. Exact asymptotics of the stochastic wave equation with time-independent noise. Ann. Inst. Henri Poincaré Probab. Stat., 58(3):1590–1620, 2022. URL: https://doi.org/10.1214/21-aihp1207, doi:10.1214/21-aihp1207.

[BC14a]

Raluca M. Balan and Daniel Conus. A note on intermittency for the fractional heat equation. Statist. Probab. Lett., 95:6–14, 2014. URL: https://doi.org/10.1016/j.spl.2014.08.001, doi:10.1016/j.spl.2014.08.001.

[BC16]

Raluca M. Balan and Daniel Conus. Intermittency for the wave and heat equations with fractional noise in time. Ann. Probab., 44(2):1488–1534, 2016. URL: https://doi.org/10.1214/15-AOP1005, doi:10.1214/15-AOP1005.

[BJQS15]

Raluca M. Balan, Maria Jolis, and Lluís Quer-Sardanyons. SPDEs with affine multiplicative fractional noise in space with index $\frac 14<H<\frac 12$. Electron. J. Probab., 20:no. 54, 36, 2015. URL: https://doi.org/10.1214/EJP.v20-3719, doi:10.1214/EJP.v20-3719.

[BJQS17]

Raluca M. Balan, Maria Jolis, and Lluís Quer-Sardanyons. Intermittency for the hyperbolic Anderson model with rough noise in space. Stochastic Process. Appl., 127(7):2316–2338, 2017. URL: https://doi.org/10.1016/j.spa.2016.10.009, doi:10.1016/j.spa.2016.10.009.

[BNQSZ22]

Raluca M. Balan, David Nualart, Lluís Quer-Sardanyons, and Guangqu Zheng. The hyperbolic Anderson model: moment estimates of the Malliavin derivatives and applications. Stoch. Partial Differ. Equ. Anal. Comput., 10(3):757–827, 2022. URL: https://doi.org/10.1007/s40072-021-00227-5, doi:10.1007/s40072-021-00227-5.

[BS17]

Raluca M. Balan and Jian Song. Hyperbolic Anderson model with space-time homogeneous Gaussian noise. ALEA Lat. Am. J. Probab. Math. Stat., 14(2):799–849, 2017.

[BS19]

Raluca M. Balan and Jian Song. Second order Lyapunov exponents for parabolic and hyperbolic Anderson models. Bernoulli, 25(4A):3069–3089, 2019. URL: https://doi.org/10.3150/18-BEJ1080, doi:10.3150/18-BEJ1080.

[BMSS95]

Vlad Bally, Annie Millet, and Marta Sanz-Solé. Approximation and support theorem in Hölder norm for parabolic stochastic partial differential equations. Ann. Probab., 23(1):178–222, 1995. URL: http://links.jstor.org/sici?sici=0091-1798(199501)23:1<178:AASTIH>2.0.CO;2-N&origin=MSN.

[BP98]

Vlad Bally and Etienne Pardoux. Malliavin calculus for white noise driven parabolic SPDEs. Potential Anal., 9(1):27–64, 1998. URL: https://doi.org/10.1023/A:1008686922032, doi:10.1023/A:1008686922032.

[BS95]

Albert-László Barabási and H. Eugene Stanley. Fractal concepts in surface growth. Cambridge University Press, Cambridge, 1995. ISBN 0-521-48318-2. URL: https://doi.org/10.1017/CBO9780511599798, doi:10.1017/CBO9780511599798.

[BCR09]

Richard F. Bass, Xia Chen, and Jay Rosen. Moderate deviations for the range of planar random walks. Mem. Amer. Math. Soc., 198(929):viii+82, 2009. URL: https://doi.org/10.1090/memo/0929, doi:10.1090/memo/0929.

[BOTW22]

Fabrice Baudoin, Cheng Ouyang, Samy Tindel, and Jing Wang. Parabolic anderson model on heisenberg groups: the itô setting. Preprint arXiv:2206.14139, June 2022. URL: http://arXiv.org/abs/2206.14139.

[BDCGS12]

Roland Bauerschmidt, Hugo Duminil-Copin, Jesse Goodman, and Gordon Slade. Lectures on self-avoiding walks. In Probability and statistical physics in two and more dimensions, volume 15 of Clay Math. Proc., pages 395–467. Amer. Math. Soc., Providence, RI, 2012.

[BS92]

Drumi Bauinov and Pavel Simeonov. Integral inequalities and applications. Volume 57 of Mathematics and its Applications (East European Series). Kluwer Academic Publishers Group, Dordrecht, 1992. ISBN 0-7923-1714-9. Translated by R. A. M. Hoksbergen and V. Covachev [V. Khr. Kovachev]. URL: https://doi.org/10.1007/978-94-015-8034-2, doi:10.1007/978-94-015-8034-2.

[BB76]

J. R. Baxter and G. A. Brosamler. Energy and the law of the iterated logarithm. Math. Scand., 38(1):115–136, 1976. URL: https://doi.org/10.7146/math.scand.a-11622, doi:10.7146/math.scand.a-11622.

[BAC13]

Fayçal Ben Adda and Jacky Cresson. Corrigendum to “About non-differentiable functions” [J. Math. Anal. Appl. 263 (2001) 721–737] [mr1866075]. J. Math. Anal. Appl., 408(1):409–413, 2013. URL: https://doi.org/10.1016/j.jmaa.2013.06.027, doi:10.1016/j.jmaa.2013.06.027.

[BCJL94]

L. Bertini, N. Cancrini, and G. Jona-Lasinio. The stochastic Burgers equation. Comm. Math. Phys., 165(2):211–232, 1994. URL: http://projecteuclid.org/euclid.cmp/1104271129.

[BC95a]

Lorenzo Bertini and Nicoletta Cancrini. The stochastic heat equation: Feynman-Kac formula and intermittence. J. Statist. Phys., 78(5-6):1377–1401, 1995. URL: https://doi.org/10.1007/BF02180136, doi:10.1007/BF02180136.

[BC98]

Lorenzo Bertini and Nicoletta Cancrini. The two-dimensional stochastic heat equation: renormalizing a multiplicative noise. J. Phys. A, 31(2):615–622, 1998. URL: https://doi.org/10.1088/0305-4470/31/2/019, doi:10.1088/0305-4470/31/2/019.

[BG97]

Lorenzo Bertini and Giambattista Giacomin. Stochastic Burgers and KPZ equations from particle systems. Comm. Math. Phys., 183(3):571–607, 1997. URL: https://doi.org/10.1007/s002200050044, doi:10.1007/s002200050044.

[Ber96]

Jean Bertoin. Lévy processes. Volume 121 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1996. ISBN 0-521-56243-0.

[BHZ08]

Francesca Biagini, Yaozhong Hu, Bernt Øksendal, and Tusheng Zhang. Stochastic calculus for fractional Brownian motion and applications. Probability and its Applications (New York). Springer-Verlag London, Ltd., London, 2008. ISBN 978-1-85233-996-8. URL: https://doi.org/10.1007/978-1-84628-797-8, doi:10.1007/978-1-84628-797-8.

[Bih56]

I. Bihari. A generalization of a lemma of Bellman and its application to uniqueness problems of differential equations. Acta Math. Acad. Sci. Hungar., 7:81–94, 1956. URL: https://doi.org/10.1007/BF02022967, doi:10.1007/BF02022967.

[Bil99]

Patrick Billingsley. Convergence of probability measures. Wiley Series in Probability and Statistics: Probability and Statistics. John Wiley & Sons, Inc., New York, second edition, 1999. ISBN 0-471-19745-9. A Wiley-Interscience Publication. URL: https://doi.org/10.1002/9780470316962, doi:10.1002/9780470316962.

[BC95b]

Parbati Biswas and Binny J. Cherayil. Dynamics of fractional brownian walks. J. Phys. Chem., 99(2):816–821, 1995. URL: https://doi.org/10.1021/j100002a052, arXiv:https://doi.org/10.1021/j100002a052, doi:10.1021/j100002a052.

[BBC+15]

Wolfgang Bock, Jinky B. Bornales, Cresente O. Cabahug, Samuel Eleutério, and Ludwig Streit. Scaling properties of weakly self-avoiding fractional Brownian motion in one dimension. J. Stat. Phys., 161(5):1155–1162, 2015. URL: https://doi.org/10.1007/s10955-015-1368-9, doi:10.1007/s10955-015-1368-9.

[Bol90]

Erwin Bolthausen. On self-repellent one-dimensional random walks. Probab. Theory Related Fields, 86(4):423–441, 1990. URL: https://doi.org/10.1007/BF01198167, doi:10.1007/BF01198167.

[Bor75]

Christer Borell. The Brunn-Minkowski inequality in Gauss space. Invent. Math., 30(2):207–216, 1975. URL: https://doi.org/10.1007/BF01425510, doi:10.1007/BF01425510.

[BOS13]

Jinky Bornales, Maria João Oliveira, and Ludwig Streit. Self-repelling fractional Brownian motion—a generalized Edwards model for chain polymers. In Quantum bio-informatics V, volume 30 of QP–PQ: Quantum Probab. White Noise Anal., pages 389–401. World Sci. Publ., Hackensack, NJ, 2013. URL: https://doi.org/10.1142/9789814460026_0033, doi:10.1142/9789814460026\_0033.

[BC14b]

Alexei Borodin and Ivan Corwin. Macdonald processes. Probab. Theory Related Fields, 158(1-2):225–400, 2014. URL: https://doi.org/10.1007/s00440-013-0482-3, doi:10.1007/s00440-013-0482-3.

[BC14c]

Alexei Borodin and Ivan Corwin. Moments and Lyapunov exponents for the parabolic Anderson model. Ann. Appl. Probab., 24(3):1172–1198, 2014. URL: https://doi.org/10.1214/13-AAP944, doi:10.1214/13-AAP944.

[BH86]

Nicolas Bouleau and Francis Hirsch. Propriétés d'absolue continuité dans les espaces de Dirichlet et application aux équations différentielles stochastiques. In Séminaire de Probabilités, XX, 1984/85, volume 1204 of Lecture Notes in Math., pages 131–161. Springer, Berlin, 1986. URL: https://doi.org/10.1007/BFb0075717, doi:10.1007/BFb0075717.

[BH91]

Nicolas Bouleau and Francis Hirsch. Dirichlet forms and analysis on Wiener space. Volume 14 of De Gruyter Studies in Mathematics. Walter de Gruyter & Co., Berlin, 1991. ISBN 3-11-012919-1. URL: https://doi.org/10.1515/9783110858389, doi:10.1515/9783110858389.

[Bra05]

Richard C. Bradley. Basic properties of strong mixing conditions. A survey and some open questions. Probab. Surv., 2:107–144, 2005. Update of, and a supplement to, the 1986 original. URL: https://doi.org/10.1214/154957805100000104, doi:10.1214/154957805100000104.

[Bra07]

Richard C. Bradley. Introduction to strong mixing conditions. Vol. 2. Kendrick Press, Heber City, UT, 2007. ISBN 0-9740427-7-3.

[Bro83]

G. A. Brosamler. Laws of the iterated logarithm for Brownian motions on compact manifolds. Z. Wahrsch. Verw. Gebiete, 65(1):99–114, 1983. URL: https://doi.org/10.1007/BF00534997, doi:10.1007/BF00534997.

[BS85]

David Brydges and Thomas Spencer. Self-avoiding walk in $5$ or more dimensions. Comm. Math. Phys., 97(1-2):125–148, 1985. URL: http://projecteuclid.org/euclid.cmp/1103941982.

[BO11]

Z. Brzezniak and M. Ondreját. Weak solutions to stochastic wave equations with values in Riemannian manifolds. Comm. Partial Differential Equations, 36(9):1624–1653, 2011. URL: https://doi.org/10.1080/03605302.2011.574243, doi:10.1080/03605302.2011.574243.

[Brz97]

Zdzisław Brzezniak. On stochastic convolution in Banach spaces and applications. Stochastics Stochastics Rep., 61(3-4):245–295, 1997. URL: https://doi.org/10.1080/17442509708834122, doi:10.1080/17442509708834122.

[BGcatarek99]

Zdzisław Brzezniak and Dariusz G\c atarek. Martingale solutions and invariant measures for stochastic evolution equations in Banach spaces. Stochastic Process. Appl., 84(2):187–225, 1999. URL: https://doi.org/10.1016/S0304-4149(99)00034-4, doi:10.1016/S0304-4149(99)00034-4.

[BO07]

Zdzisław Brzezniak and Martin Ondreját. Strong solutions to stochastic wave equations with values in Riemannian manifolds. J. Funct. Anal., 253(2):449–481, 2007. URL: https://doi.org/10.1016/j.jfa.2007.03.034, doi:10.1016/j.jfa.2007.03.034.

[Bur66]

D. L. Burkholder. Martingale transforms. Ann. Math. Statist., 37:1494–1504, 1966. URL: https://doi.org/10.1214/aoms/1177699141, doi:10.1214/aoms/1177699141.

[BDG72]

D. L. Burkholder, B. J. Davis, and R. F. Gundy. Integral inequalities for convex functions of operators on martingales. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. II: Probability theory, 223–240. Univ. California Press, Berkeley, Calif., 1972.

[BG70]

D. L. Burkholder and R. F. Gundy. Extrapolation and interpolation of quasi-linear operators on martingales. Acta Math., 124:249–304, 1970. URL: https://doi.org/10.1007/BF02394573, doi:10.1007/BF02394573.

[CW75]

R. Cairoli and John B. Walsh. Stochastic integrals in the plane. Acta Math., 134:111–183, 1975. URL: https://doi.org/10.1007/BF02392100, doi:10.1007/BF02392100.

[CCL23]

David Candil, Le Chen, and Cheuk Yin Lee. Parabolic stochastic pdes on bounded domains with rough initial conditions: moment and correlation bounds. Stoch. Partial Differ. Equ. Anal. Comput., September 2023. URL: https://doi.org/10.1007/s40072-023-00310-z, doi:10.1007/s40072-023-00310-z.

[Can22]

David Jean-Michel Candil. Localization errors of the stochastic heat equation. EPFL Ph.D. Thesis, pages 221, 2022. URL: http://infoscience.epfl.ch/record/291119, doi:10.5075/epfl-thesis-7742.

[CFG17]

G. Cannizzaro, P. K. Friz, and P. Gassiat. Malliavin calculus for regularity structures: the case of gPAM. J. Funct. Anal., 272(1):363–419, 2017. URL: https://doi.org/10.1016/j.jfa.2016.09.024, doi:10.1016/j.jfa.2016.09.024.

[CHL97]

Mireille Capitaine, Elton P. Hsu, and Michel Ledoux. Martingale representation and a simple proof of logarithmic Sobolev inequalities on path spaces. Electron. Comm. Probab., 2:71–81, 1997. URL: https://doi.org/10.1214/ECP.v2-986, doi:10.1214/ECP.v2-986.

[CWM04]

C. Cardon-Weber and A. Millet. On strongly Petrovskiui's parabolic SPDEs in arbitrary dimension and application to the stochastic Cahn-Hilliard equation. J. Theoret. Probab., 17(1):1–49, 2004. URL: https://doi.org/10.1023/B:JOTP.0000020474.79479.fa, doi:10.1023/B:JOTP.0000020474.79479.fa.

[CK91]

Eric Carlen and Paul Krée. $L^p$ estimates on iterated stochastic integrals. Ann. Probab., 19(1):354–368, 1991. URL: http://links.jstor.org/sici?sici=0091-1798(199101)19:1<354:EOISI>2.0.CO;2-C&origin=MSN.

[CH06]

Philippe Carmona and Yueyun Hu. Strong disorder implies strong localization for directed polymers in a random environment. ALEA Lat. Am. J. Probab. Math. Stat., 2:217–229, 2006.

[CKM01]

Rene Carmona, Leonid Koralov, and Stanislav Molchanov. Asymptotics for the almost sure Lyapunov exponent for the solution of the parabolic Anderson problem. Random Oper. Stochastic Equations, 9(1):77–86, 2001. URL: https://doi.org/10.1515/rose.2001.9.1.77, doi:10.1515/rose.2001.9.1.77.

[CN88a]

René Carmona and David Nualart. Random nonlinear wave equations: propagation of singularities. Ann. Probab., 16(2):730–751, 1988. URL: http://links.jstor.org/sici?sici=0091-1798(198804)16:2<730:RNWEPO>2.0.CO;2-D&origin=MSN.

[CN88b]

René Carmona and David Nualart. Random nonlinear wave equations: smoothness of the solutions. Probab. Theory Related Fields, 79(4):469–508, 1988. URL: https://doi.org/10.1007/BF00318783, doi:10.1007/BF00318783.

[CM94]

René A. Carmona and S. A. Molchanov. Parabolic Anderson problem and intermittency. Mem. Amer. Math. Soc., 108(518):viii+125, 1994. URL: https://doi.org/10.1090/memo/0518, doi:10.1090/memo/0518.

[Cer01]

Sandra Cerrai. Second order PDE's in finite and infinite dimension. Volume 1762 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2001. ISBN 3-540-42136-X. A probabilistic approach. URL: https://doi.org/10.1007/b80743, doi:10.1007/b80743.

[Cer03]

Sandra Cerrai. Stochastic reaction-diffusion systems with multiplicative noise and non-Lipschitz reaction term. Probab. Theory Related Fields, 125(2):271–304, 2003. URL: https://doi.org/10.1007/s00440-002-0230-6, doi:10.1007/s00440-002-0230-6.

[CR04]

Sandra Cerrai and Michael Röckner. Large deviations for stochastic reaction-diffusion systems with multiplicative noise and non-Lipschitz reaction term. Ann. Probab., 32(1B):1100–1139, 2004. URL: https://doi.org/10.1214/aop/1079021473, doi:10.1214/aop/1079021473.

[Che13]

Le Chen. Moments, intermittency, and growth indices for nonlinear stochastic pde's with rough initial conditions. EPFL Ph.D. Thesis, 2013. URL: http://infoscience.epfl.ch/record/185885, doi:10.5075/epfl-thesis-5712.

[Che16a]

Le Chen. The third moment for the parabolic anderson model. Preprint arXiv:1609.01005, September 2016. URL: https://www.arxiv.org/abs/1609.01005.

[Che17a]

Le Chen. Nonlinear stochastic time-fractional diffusion equations on $\Bbb R$: moments, Hölder regularity and intermittency. Trans. Amer. Math. Soc., 369(12):8497–8535, 2017. URL: https://doi.org/10.1090/tran/6951, doi:10.1090/tran/6951.

[Che23a]

Le Chen. Financial mathematics: open slides. nov 2023. URL: chenle02/Open_Slides_Financial_Mathematics, doi:10.5281/zenodo.10207028.

[Che23b]

Le Chen. Open slides for linear algebra. nov 2023. URL: chenle02/Open_Slides_for_Linear_Algebra, doi:10.5281/zenodo.10206020.

[Che23c]

Le Chen. Statistics: open slides. nov 2023. URL: chenle02/Open_Slides_Statistics, doi:10.5281/zenodo.10206720.

[CCKK17]

Le Chen, Michael Cranston, Davar Khoshnevisan, and Kunwoo Kim. Dissipation and high disorder. Ann. Probab., 45(1):82–99, 2017. URL: https://doi.org/10.1214/15-AOP1040, doi:10.1214/15-AOP1040.

[CD14a]

Le Chen and Robert C. Dalang. Hölder-continuity for the nonlinear stochastic heat equation with rough initial conditions. Stoch. Partial Differ. Equ. Anal. Comput., 2(3):316–352, 2014. URL: https://doi.org/10.1007/s40072-014-0034-6, doi:10.1007/s40072-014-0034-6.

[CD14b]

Le Chen and Robert C. Dalang. Moment bounds in spde's with application to the stochastic wave equation. Preprint arXiv:1401.6506, January 2014. URL: https://www.arxiv.org/abs/1401.6506.

[CD15a]

Le Chen and Robert C. Dalang. Moment bounds and asymptotics for the stochastic wave equation. Stochastic Process. Appl., 125(4):1605–1628, 2015. URL: https://doi.org/10.1016/j.spa.2014.11.009, doi:10.1016/j.spa.2014.11.009.

[CD15b]

Le Chen and Robert C. Dalang. Moments and growth indices for the nonlinear stochastic heat equation with rough initial conditions. Ann. Probab., 43(6):3006–3051, 2015. URL: https://doi.org/10.1214/14-AOP954, doi:10.1214/14-AOP954.

[CD15c]

Le Chen and Robert C. Dalang. Moments, intermittency and growth indices for the nonlinear fractional stochastic heat equation. Stoch. Partial Differ. Equ. Anal. Comput., 3(3):360–397, 2015. URL: https://doi.org/10.1007/s40072-015-0054-x, doi:10.1007/s40072-015-0054-x.

[CE22a]

Le Chen and Nicholas Eisenberg. Interpolating the stochastic heat and wave equations with time-independent noise: solvability and exact asymptotics. Stoch. Partial Differ. Equ. Anal. Comput. (in press), August 2022. URL: https://www.arxiv.org/abs/2108.11473.

[CE22b]

Le Chen and Nicholas Eisenberg. Invariant measures for the nonlinear stochastic heat equation with no drift term. J. Theoret. Probab. (pending revision, preprint arXiv:2209.04771), September 2022. URL: http://arXiv.org/abs/2209.04771.

[CE23]

Le Chen and Nicholas Eisenberg. Interpolating the stochastic heat and wave equations with time-independent noise: solvability and exact asymptotics. Stoch. Partial Differ. Equ. Anal. Comput., 11(3):1203–1253, 2023. URL: https://doi.org/10.1007/s40072-022-00258-6, doi:10.1007/s40072-022-00258-6.

[CFHS23]

Le Chen, Mohammud Foondun, Jingyu Huang, and Michael Salins. Global solution for superlinear stochastic heat equation on $\mathbb R^d$ under osgood-type conditions. Preprint arXiv:2310.02153, October 2023. URL: http://arXiv.org/abs/2310.02153.

[CGS22]

Le Chen, Yuhui Guo, and Jian Song. Moments and asymptotics for a class of spdes with space-time white noise. Preprint arXiv:2206.10069, to appear in Trans. Amer. Math. Soc., June 2022. URL: https://www.arxiv.org/abs/2206.10069.

[CH22]

Le Chen and Guannan Hu. Hölder regularity for the nonlinear stochastic time-fractional slow & fast diffusion equations on $\Bbb R^d$. Fract. Calc. Appl. Anal., 25(2):608–629, 2022. URL: https://doi.org/10.1007/s13540-022-00033-3, doi:10.1007/s13540-022-00033-3.

[CH23a]

Le Chen and Guannan Hu. Some symbolic tools for the Fox $H$-function. nov 2023. URL: chenle02/Fox-H_Symbolic_Tools, doi:10.5281/zenodo.10143785.

[CHHH17]

Le Chen, Guannan Hu, Yaozhong Hu, and Jingyu Huang. Space-time fractional diffusions in Gaussian noisy environment. Stochastics, 89(1):171–206, 2017. URL: https://doi.org/10.1080/17442508.2016.1146282, doi:10.1080/17442508.2016.1146282.

[CHKN18]

Le Chen, Yaozhong Hu, Kamran Kalbasi, and David Nualart. Intermittency for the stochastic heat equation driven by a rough time fractional Gaussian noise. Probab. Theory Related Fields, 171(1-2):431–457, 2018. URL: https://doi.org/10.1007/s00440-017-0783-z, doi:10.1007/s00440-017-0783-z.

[CHN17]

Le Chen, Yaozhong Hu, and David Nualart. Two-point correlation function and Feynman-Kac formula for the stochastic heat equation. Potential Anal., 46(4):779–797, 2017. URL: https://doi.org/10.1007/s11118-016-9601-y, doi:10.1007/s11118-016-9601-y.

[CHN19]

Le Chen, Yaozhong Hu, and David Nualart. Nonlinear stochastic time-fractional slow and fast diffusion equations on $\Bbb R^d$. Stochastic Process. Appl., 129(12):5073–5112, 2019. URL: https://doi.org/10.1016/j.spa.2019.01.003, doi:10.1016/j.spa.2019.01.003.

[CHN21]

Le Chen, Yaozhong Hu, and David Nualart. Regularity and strict positivity of densities for the nonlinear stochastic heat equation. Mem. Amer. Math. Soc., 273(1340):v+102, 2021. URL: https://doi.org/10.1090/memo/1340, doi:10.1090/memo/1340.

[CH19a]

Le Chen and Jingyu Huang. Comparison principle for stochastic heat equation on $\Bbb R^d$. Ann. Probab., 47(2):989–1035, 2019. URL: https://doi.org/10.1214/18-AOP1277, doi:10.1214/18-AOP1277.

[CH19b]

Le Chen and Jingyu Huang. Regularity and strict positivity of densities for the stochastic heat equation on $\mathbb R^d$. Preprint arXiv:1902.02382, February 2019. URL: https://www.arxiv.org/abs/1902.02382.

[CH23b]

Le Chen and Jingyu Huang. Superlinear stochastic heat equation on $\Bbb R^d$. Proc. Amer. Math. Soc., 151(9):4063–4078, 2023. URL: https://doi.org/10.1090/proc/16436, doi:10.1090/proc/16436.

[CHKK19]

Le Chen, Jingyu Huang, Davar Khoshnevisan, and Kunwoo Kim. Dense blowup for parabolic SPDEs. Electron. J. Probab., 24:Paper No. 118, 33, 2019. URL: https://doi.org/10.1214/19-ejp372, doi:10.1214/19-ejp372.

[CKK16]

Le Chen, Davar Khoshnevisan, and Kunwoo Kim. Decorrelation of total mass via energy. Potential Anal., 45(1):157–166, 2016. URL: https://doi.org/10.1007/s11118-016-9540-7, doi:10.1007/s11118-016-9540-7.

[CKK17]

Le Chen, Davar Khoshnevisan, and Kunwoo Kim. A boundedness trichotomy for the stochastic heat equation. Ann. Inst. Henri Poincaré Probab. Stat., 53(4):1991–2004, 2017. URL: https://doi.org/10.1214/16-AIHP780, doi:10.1214/16-AIHP780.

[CKNP21a]

Le Chen, Davar Khoshnevisan, David Nualart, and Fei Pu. A CLT for dependent random variables with an application to an infinite system of interacting diffusion processes. Proc. Amer. Math. Soc., 149(12):5367–5384, 2021. URL: https://doi.org/10.1090/proc/15614, doi:10.1090/proc/15614.

[CKNP21b]

Le Chen, Davar Khoshnevisan, David Nualart, and Fei Pu. Spatial ergodicity for SPDEs via Poincaré-type inequalities. Electron. J. Probab., 26:Paper No. 140, 37, 2021. URL: https://doi.org/10.1214/21-ejp690, doi:10.1214/21-ejp690.

[CKNP22a]

Le Chen, Davar Khoshnevisan, David Nualart, and Fei Pu. Central limit theorems for parabolic stochastic partial differential equations. Ann. Inst. Henri Poincaré Probab. Stat., 58(2):1052–1077, 2022. URL: https://doi.org/10.1214/21-aihp1189, doi:10.1214/21-aihp1189.

[CKNP22b]

Le Chen, Davar Khoshnevisan, David Nualart, and Fei Pu. Spatial ergodicity and central limit theorems for parabolic Anderson model with delta initial condition. J. Funct. Anal., 282(2):Paper No. 109290, 35, 2022. URL: https://doi.org/10.1016/j.jfa.2021.109290, doi:10.1016/j.jfa.2021.109290.

[CKNP23]

Le Chen, Davar Khoshnevisan, David Nualart, and Fei Pu. Central limit theorems for spatial averages of the stochastic heat equation via Malliavin-Stein's method. Stoch. Partial Differ. Equ. Anal. Comput., 11(1):122–176, 2023. URL: https://doi.org/10.1007/s40072-021-00224-8, doi:10.1007/s40072-021-00224-8.

[CK17]

Le Chen and Kunwoo Kim. On comparison principle and strict positivity of solutions to the nonlinear stochastic fractional heat equations. Ann. Inst. Henri Poincaré Probab. Stat., 53(1):358–388, 2017. URL: https://doi.org/10.1214/15-AIHP719, doi:10.1214/15-AIHP719.

[CK19]

Le Chen and Kunwoo Kim. Nonlinear stochastic heat equation driven by spatially colored noise: moments and intermittency. Acta Math. Sci. Ser. B (Engl. Ed.), 39(3):645–668, 2019. URL: https://doi.org/10.1007/s10473-019-0303-6, doi:10.1007/s10473-019-0303-6.

[CK20]

Le Chen and Kunwoo Kim. Stochastic comparisons for stochastic heat equation. Electron. J. Probab., 25:Paper No. 140, 38, 2020. URL: https://doi.org/10.1214/20-ejp541, doi:10.1214/20-ejp541.

[COTX24]

Le Chen, Cheng Ouyang, Samy Tindel, and Panqiu Xia. On ergodic properties of stochastic PDEs. Preprint arXiv:2412.03521, December 2024. URL: http://arXiv.org/abs/2412.03521.

[COV23]

Le Chen, Cheng Ouyang, and William Vickery. Parabolic anderson model with colored noise on torus. Preprint arXiv:2308.10802, to appear in Bernoulli, August 2023. URL: http://arXiv.org/abs/2308.10802.

[CX23]

Le Chen and Panqiu Xia. Asymptotic properties of stochastic partial differential equations in the sublinear regime. Preprint arXiv:2306.06761, to appear in Annals of Probability, June 2023. URL: http://arXiv.org/abs/2306.06761.

[Che07]

Xia Chen. Large deviations and laws of the iterated logarithm for the local times of additive stable processes. Ann. Probab., 35(2):602–648, 2007. URL: https://doi.org/10.1214/009117906000000601, doi:10.1214/009117906000000601.

[Che12]

Xia Chen. Quenched asymptotics for Brownian motion of renormalized Poisson potential and for the related parabolic Anderson models. Ann. Probab., 40(4):1436–1482, 2012. URL: https://doi.org/10.1214/11-AOP655, doi:10.1214/11-AOP655.

[Che15]

Xia Chen. Precise intermittency for the parabolic Anderson equation with an $(1+1)$-dimensional time-space white noise. Ann. Inst. Henri Poincaré Probab. Stat., 51(4):1486–1499, 2015. URL: https://doi.org/10.1214/15-AIHP673, doi:10.1214/15-AIHP673.

[Che16b]

Xia Chen. Spatial asymptotics for the parabolic Anderson models with generalized time-space Gaussian noise. Ann. Probab., 44(2):1535–1598, 2016. URL: https://doi.org/10.1214/15-AOP1006, doi:10.1214/15-AOP1006.

[Che17b]

Xia Chen. Moment asymptotics for parabolic Anderson equation with fractional time-space noise: in Skorokhod regime. Ann. Inst. Henri Poincaré Probab. Stat., 53(2):819–841, 2017. URL: https://doi.org/10.1214/15-AIHP738, doi:10.1214/15-AIHP738.

[Che19]

Xia Chen. Parabolic Anderson model with rough or critical Gaussian noise. Ann. Inst. Henri Poincaré Probab. Stat., 55(2):941–976, 2019. URL: https://doi.org/10.1214/18-aihp904, doi:10.1214/18-aihp904.

[CDOT21]

Xia Chen, Aurélien Deya, Cheng Ouyang, and Samy Tindel. Moment estimates for some renormalized parabolic Anderson models. Ann. Probab., 49(5):2599–2636, 2021. URL: https://doi.org/10.1214/21-aop1517, doi:10.1214/21-aop1517.

[CHNT17]

Xia Chen, Yaozhong Hu, David Nualart, and Samy Tindel. Spatial asymptotics for the parabolic Anderson model driven by a Gaussian rough noise. Electron. J. Probab., 22:Paper No. 65, 38, 2017. URL: https://doi.org/10.1214/17-EJP83, doi:10.1214/17-EJP83.

[CHSS18]

Xia Chen, Yaozhong Hu, Jian Song, and Xiaoming Song. Temporal asymptotics for fractional parabolic Anderson model. Electron. J. Probab., 23:Paper No. 14, 39, 2018. URL: https://doi.org/10.1214/18-EJP139, doi:10.1214/18-EJP139.

[CHSX15]

Xia Chen, Yaozhong Hu, Jian Song, and Fei Xing. Exponential asymptotics for time-space Hamiltonians. Ann. Inst. Henri Poincaré Probab. Stat., 51(4):1529–1561, 2015. URL: https://doi.org/10.1214/13-AIHP588, doi:10.1214/13-AIHP588.

[CL04]

Xia Chen and Wenbo V. Li. Large and moderate deviations for intersection local times. Probab. Theory Related Fields, 128(2):213–254, 2004. URL: https://doi.org/10.1007/s00440-003-0298-7, doi:10.1007/s00440-003-0298-7.

[CLR05]

Xia Chen, Wenbo V. Li, and Jay Rosen. Large deviations for local times of stable processes and stable random walks in 1 dimension. Electron. J. Probab., 10:no. 16, 577–608, 2005. URL: https://doi.org/10.1214/EJP.v10-260, doi:10.1214/EJP.v10-260.

[CYZ10]

Yan Chen, Ying Yan, and Kewei Zhang. On the local fractional derivative. J. Math. Anal. Appl., 362(1):17–33, 2010. URL: https://doi.org/10.1016/j.jmaa.2009.08.014, doi:10.1016/j.jmaa.2009.08.014.

[CH21]

Zhen-Qing Chen and Yaozhong Hu. Solvability of parabolic anderson equation with fractional gaussian noise. To appear in Comm. in Math. Stat., preprint arXiv:2101.05997, January 2021. URL: https://www.arxiv.org/abs/2101.05997.

[CKK15]

Zhen-Qing Chen, Kyeong-Hun Kim, and Panki Kim. Fractional time stochastic partial differential equations. Stochastic Process. Appl., 125(4):1470–1499, 2015. URL: https://doi.org/10.1016/j.spa.2014.11.005, doi:10.1016/j.spa.2014.11.005.

[Cho02]

Pao-Liu Chow. Stochastic wave equations with polynomial nonlinearity. Ann. Appl. Probab., 12(1):361–381, 2002. URL: https://doi.org/10.1214/aoap/1015961168, doi:10.1214/aoap/1015961168.

[CF51]

K. L. Chung and W. H. J. Fuchs. On the distribution of values of sums of random variables. Mem. Amer. Math. Soc., 6:12, 1951.

[CW90]

K. L. Chung and R. J. Williams. Introduction to stochastic integration. Probability and its Applications. Birkhäuser Boston, Inc., Boston, MA, second edition, 1990. ISBN 0-8176-3386-3. URL: https://doi.org/10.1007/978-1-4612-4480-6, doi:10.1007/978-1-4612-4480-6.

[CT62]

Z. Ciesielski and S. J. Taylor. First passage times and sojourn times for Brownian motion in space and the exact Hausdorff measure of the sample path. Trans. Amer. Math. Soc., 103:434–450, 1962. URL: https://doi.org/10.2307/1993838, doi:10.2307/1993838.

[Com17]

Francis Comets. Directed polymers in random environments. Volume 2175 of Lecture Notes in Mathematics. Springer, Cham, 2017. ISBN 978-3-319-50486-5; 978-3-319-50487-2. Lecture notes from the 46th Probability Summer School held in Saint-Flour, 2016. URL: https://doi.org/10.1007/978-3-319-50487-2, doi:10.1007/978-3-319-50487-2.

[Con13]

Daniel Conus. Moments for the parabolic Anderson model: on a result by Hu and Nualart. Commun. Stoch. Anal., 7(1):125–152, 2013. URL: https://doi.org/10.31390/cosa.7.1.08, doi:10.31390/cosa.7.1.08.

[CD08]

Daniel Conus and Robert C. Dalang. The non-linear stochastic wave equation in high dimensions. Electron. J. Probab., 13:no. 22, 629–670, 2008. URL: https://doi.org/10.1214/EJP.v13-500, doi:10.1214/EJP.v13-500.

[CJK12]

Daniel Conus, Mathew Joseph, and Davar Khoshnevisan. Correlation-length bounds, and estimates for intermittent islands in parabolic SPDEs. Electron. J. Probab., 17:no. 102, 15, 2012. URL: https://doi.org/10.1214/EJP.v17-2429, doi:10.1214/EJP.v17-2429.

[CJK13]

Daniel Conus, Mathew Joseph, and Davar Khoshnevisan. On the chaotic character of the stochastic heat equation, before the onset of intermitttency. Ann. Probab., 41(3B):2225–2260, 2013. URL: https://doi.org/10.1214/11-AOP717, doi:10.1214/11-AOP717.

[CJKS13a]

Daniel Conus, Mathew Joseph, Davar Khoshnevisan, and Shang-Yuan Shiu. Intermittency and chaos for a nonlinear stochastic wave equation in dimension 1. In Malliavin calculus and stochastic analysis, volume 34 of Springer Proc. Math. Stat., pages 251–279. Springer, New York, 2013. URL: https://doi.org/10.1007/978-1-4614-5906-4_11, doi:10.1007/978-1-4614-5906-4\_11.

[CJKS13b]

Daniel Conus, Mathew Joseph, Davar Khoshnevisan, and Shang-Yuan Shiu. On the chaotic character of the stochastic heat equation, II. Probab. Theory Related Fields, 156(3-4):483–533, 2013. URL: https://doi.org/10.1007/s00440-012-0434-3, doi:10.1007/s00440-012-0434-3.

[CJKS14]

Daniel Conus, Mathew Joseph, Davar Khoshnevisan, and Shang-Yuan Shiu. Initial measures for the stochastic heat equation. Ann. Inst. Henri Poincaré Probab. Stat., 50(1):136–153, 2014. URL: https://doi.org/10.1214/12-AIHP505, doi:10.1214/12-AIHP505.

[CK10]

Daniel Conus and Davar Khoshnevisan. Weak nonmild solutions to some SPDEs. Illinois J. Math., 54(4):1329–1341 (2012), 2010. URL: http://projecteuclid.org/euclid.ijm/1348505531.

[CK12]

Daniel Conus and Davar Khoshnevisan. On the existence and position of the farthest peaks of a family of stochastic heat and wave equations. Probab. Theory Related Fields, 152(3-4):681–701, 2012. URL: https://doi.org/10.1007/s00440-010-0333-4, doi:10.1007/s00440-010-0333-4.

[Cor12]

Ivan Corwin. The Kardar-Parisi-Zhang equation and universality class. Random Matrices Theory Appl., 1(1):1130001, 76, 2012. URL: https://doi.org/10.1142/S2010326311300014, doi:10.1142/S2010326311300014.

[CG20]

Ivan Corwin and Promit Ghosal. KPZ equation tails for general initial data. Electron. J. Probab., 25:Paper No. 66, 38, 2020. URL: https://doi.org/10.1214/20-ejp467, doi:10.1214/20-ejp467.

[CQ13]

Ivan Corwin and Jeremy Quastel. Crossover distributions at the edge of the rarefaction fan. Ann. Probab., 41(3A):1243–1314, 2013. URL: https://doi.org/10.1214/11-AOP725, doi:10.1214/11-AOP725.

[CSZ21]

Clément Cosco, Inbar Seroussi, and Ofer Zeitouni. Directed polymers on infinite graphs. Comm. Math. Phys., 386(1):395–432, 2021. URL: https://doi.org/10.1007/s00220-021-04034-w, doi:10.1007/s00220-021-04034-w.

[CT06]

Thomas M. Cover and Joy A. Thomas. Elements of information theory. Wiley-Interscience [John Wiley & Sons], Hoboken, NJ, second edition, 2006. ISBN 978-0-471-24195-9; 0-471-24195-4.

[CFG96]

J. Theodore Cox, Klaus Fleischmann, and Andreas Greven. Comparison of interacting diffusions and an application to their ergodic theory. Probab. Theory Related Fields, 105(4):513–528, 1996. URL: https://doi.org/10.1007/BF01191911, doi:10.1007/BF01191911.

[CRA+08]

Damian Craiem, Francisco J Rojo, José Miguel Atienza, Ricardo L Armentano, and Gustavo V Guinea. Fractional-order viscoelasticity applied to describe uniaxial stress relaxation of human arteries. Physics in Medicine & Biology, 53(17):4543, aug 2008. URL: https://dx.doi.org/10.1088/0031-9155/53/17/006, doi:10.1088/0031-9155/53/17/006.

[CM07]

M. Cranston and S. Molchanov. Quenched to annealed transition in the parabolic Anderson problem. Probab. Theory Related Fields, 138(1-2):177–193, 2007. URL: https://doi.org/10.1007/s00440-006-0020-7, doi:10.1007/s00440-006-0020-7.

[CMS02]

M. Cranston, T. S. Mountford, and T. Shiga. Lyapunov exponents for the parabolic Anderson model. Acta Math. Univ. Comenian. (N.S.), 71(2):163–188, 2002.

[DPKwapienZ87]

G. Da Prato, S. Kwapień, and J. Zabczyk. Regularity of solutions of linear stochastic equations in Hilbert spaces. Stochastics, 23(1):1–23, 1987. URL: https://doi.org/10.1080/17442508708833480, doi:10.1080/17442508708833480.

[DPZ96]

G. Da Prato and J. Zabczyk. Ergodicity for infinite-dimensional systems. Volume 229 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1996. ISBN 0-521-57900-7. URL: https://doi.org/10.1017/CBO9780511662829, doi:10.1017/CBO9780511662829.

[DPZ02]

Giuseppe Da Prato and Jerzy Zabczyk. Second order partial differential equations in Hilbert spaces. Volume 293 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 2002. ISBN 0-521-77729-1. URL: https://doi.org/10.1017/CBO9780511543210, doi:10.1017/CBO9780511543210.

[DPZ14]

Giuseppe Da Prato and Jerzy Zabczyk. Stochastic equations in infinite dimensions. Volume 152 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, second edition, 2014. ISBN 978-1-107-05584-1. URL: https://doi.org/10.1017/CBO9781107295513, doi:10.1017/CBO9781107295513.

[DKM+09]

Robert Dalang, Davar Khoshnevisan, Carl Mueller, David Nualart, and Yimin Xiao. A minicourse on stochastic partial differential equations. Volume 1962 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2009. ISBN 978-3-540-85993-2. Held at the University of Utah, Salt Lake City, UT, May 8–19, 2006, Edited by Khoshnevisan and Firas Rassoul-Agha.

[Dal99]

Robert C. Dalang. Extending the martingale measure stochastic integral with applications to spatially homogeneous s.p.d.e.'s. Electron. J. Probab., 4:no. 6, 29, 1999. URL: https://doi.org/10.1214/EJP.v4-43, doi:10.1214/EJP.v4-43.

[Dal09]

Robert C. Dalang. The stochastic wave equation. In A minicourse on stochastic partial differential equations, volume 1962 of Lecture Notes in Math., pages 39–71. Springer, Berlin, 2009. URL: https://doi.org/10.1007/978-3-540-85994-9_2, doi:10.1007/978-3-540-85994-9\_2.

[DF98]

Robert C. Dalang and N. E. Frangos. The stochastic wave equation in two spatial dimensions. Ann. Probab., 26(1):187–212, 1998. URL: https://doi.org/10.1214/aop/1022855416, doi:10.1214/aop/1022855416.

[DKN07]

Robert C. Dalang, Davar Khoshnevisan, and Eulalia Nualart. Hitting probabilities for systems of non-linear stochastic heat equations with additive noise. ALEA Lat. Am. J. Probab. Math. Stat., 3:231–271, 2007.

[DKN09]

Robert C. Dalang, Davar Khoshnevisan, and Eulalia Nualart. Hitting probabilities for systems for non-linear stochastic heat equations with multiplicative noise. Probab. Theory Related Fields, 144(3-4):371–427, 2009. URL: https://doi.org/10.1007/s00440-008-0150-1, doi:10.1007/s00440-008-0150-1.

[DKZ19]

Robert C. Dalang, Davar Khoshnevisan, and Tusheng Zhang. Global solutions to stochastic reaction-diffusion equations with super-linear drift and multiplicative noise. Ann. Probab., 47(1):519–559, 2019. URL: https://doi.org/10.1214/18-AOP1270, doi:10.1214/18-AOP1270.

[DL04]

Robert C. Dalang and Olivier Lévêque. Second-order linear hyperbolic SPDEs driven by isotropic Gaussian noise on a sphere. Ann. Probab., 32(1B):1068–1099, 2004. URL: https://doi.org/10.1214/aop/1079021472, doi:10.1214/aop/1079021472.

[DL06]

Robert C. Dalang and Olivier Lévêque. Second-order hyperbolic S.P.D.E.'s driven by homogeneous Gaussian noise on a hyperplane. Trans. Amer. Math. Soc., 358(5):2123–2159, 2006. URL: https://doi.org/10.1090/S0002-9947-05-03740-2, doi:10.1090/S0002-9947-05-03740-2.

[DMZ06]

Robert C. Dalang, C. Mueller, and L. Zambotti. Hitting properties of parabolic s.p.d.e.'s with reflection. Ann. Probab., 34(4):1423–1450, 2006. URL: https://doi.org/10.1214/009117905000000792, doi:10.1214/009117905000000792.

[DM03]

Robert C. Dalang and Carl Mueller. Some non-linear S.P.D.E.'s that are second order in time. Electron. J. Probab., 8:no. 1, 21, 2003. URL: https://doi.org/10.1214/EJP.v8-123, doi:10.1214/EJP.v8-123.

[DM09]

Robert C. Dalang and Carl Mueller. Intermittency properties in a hyperbolic Anderson problem. Ann. Inst. Henri Poincaré Probab. Stat., 45(4):1150–1164, 2009. URL: https://doi.org/10.1214/08-AIHP199, doi:10.1214/08-AIHP199.

[DMT08]

Robert C. Dalang, Carl Mueller, and Roger Tribe. A Feynman-Kac-type formula for the deterministic and stochastic wave equations and other P.D.E.'s. Trans. Amer. Math. Soc., 360(9):4681–4703, 2008. URL: https://doi.org/10.1090/S0002-9947-08-04351-1, doi:10.1090/S0002-9947-08-04351-1.

[DQS11]

Robert C. Dalang and Lluís Quer-Sardanyons. Stochastic integrals for spde's: a comparison. Expo. Math., 29(1):67–109, 2011. URL: https://doi.org/10.1016/j.exmath.2010.09.005, doi:10.1016/j.exmath.2010.09.005.

[DSS05]

Robert C. Dalang and Marta Sanz-Solé. Regularity of the sample paths of a class of second-order spde's. J. Funct. Anal., 227(2):304–337, 2005. URL: https://doi.org/10.1016/j.jfa.2004.11.015, doi:10.1016/j.jfa.2004.11.015.

[DSS09]

Robert C. Dalang and Marta Sanz-Solé. Hölder-Sobolev regularity of the solution to the stochastic wave equation in dimension three. Mem. Amer. Math. Soc., 199(931):vi+70, 2009. URL: https://doi.org/10.1090/memo/0931, doi:10.1090/memo/0931.

[DG15]

Konstantinos Dareiotis and Máté Gerencsér. On the boundedness of solutions of SPDEs. Stoch. Partial Differ. Equ. Anal. Comput., 3(1):84–102, 2015. URL: https://doi.org/10.1007/s40072-014-0043-5, doi:10.1007/s40072-014-0043-5.

[Dav90]

E. B. Davies. Heat kernels and spectral theory. Volume 92 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1990. ISBN 0-521-40997-7.

[Dav76]

Burgess Davis. On the $L^p$ norms of stochastic integrals and other martingales. Duke Math. J., 43(4):697–704, 1976. URL: http://projecteuclid.org/euclid.dmj/1077311944.

[DIP89]

D. A. Dawson, I. Iscoe, and E. A. Perkins. Super-Brownian motion: path properties and hitting probabilities. Probab. Theory Related Fields, 83(1-2):135–205, 1989. URL: https://doi.org/10.1007/BF00333147, doi:10.1007/BF00333147.

[Daw93]

Donald A. Dawson. Measure-valued Markov processes. In École d'Été de Probabilités de Saint-Flour XXI—1991, volume 1541 of Lecture Notes in Math., pages 1–260. Springer, Berlin, 1993. URL: https://doi.org/10.1007/BFb0084190, doi:10.1007/BFb0084190.

[DP12]

Donald A. Dawson and Edwin Perkins. Superprocesses at Saint-Flour. Probability at Saint-Flour. Springer, Heidelberg, 2012. ISBN 978-3-642-25431-4.

[DS80]

Donald A. Dawson and Habib Salehi. Spatially homogeneous random evolutions. J. Multivariate Anal., 10(2):141–180, 1980. URL: https://doi.org/10.1016/0047-259X(80)90012-3, doi:10.1016/0047-259X(80)90012-3.

[Deb06]

Latifa Debbi. Explicit solutions of some fractional partial differential equations via stable subordinators. J. Appl. Math. Stoch. Anal., pages Art. ID 93502, 18, 2006. URL: https://doi.org/10.1155/JAMSA/2006/93502, doi:10.1155/JAMSA/2006/93502.

[DD05]

Latifa Debbi and Marco Dozzi. On the solutions of nonlinear stochastic fractional partial differential equations in one spatial dimension. Stochastic Process. Appl., 115(11):1764–1781, 2005. URL: https://doi.org/10.1016/j.spa.2005.06.001, doi:10.1016/j.spa.2005.06.001.

[DPD02]

Manuel Del Pino and Jean Dolbeault. Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions. J. Math. Pures Appl. (9), 81(9):847–875, 2002. URL: https://doi.org/10.1016/S0021-7824(02)01266-7, doi:10.1016/S0021-7824(02)01266-7.

[DVNZ20]

Francisco Delgado-Vences, David Nualart, and Guangqu Zheng. A central limit theorem for the stochastic wave equation with fractional noise. Ann. Inst. Henri Poincaré Probab. Stat., 56(4):3020–3042, 2020. URL: https://doi.org/10.1214/20-AIHP1069, doi:10.1214/20-AIHP1069.

[Deu88]

Jean-Dominique Deuschel. Central limit theorem for an infinite lattice system of interacting diffusion processes. Ann. Probab., 16(2):700–716, 1988. URL: http://links.jstor.org/sici?sici=0091-1798(198804)16:2<700:CLTFAI>2.0.CO;2-2&origin=MSN.

[DPT19]

Aurélien Deya, Fabien Panloup, and Samy Tindel. Rate of convergence to equilibrium of fractional driven stochastic differential equations with rough multiplicative noise. Ann. Probab., 47(1):464–518, 2019. URL: https://doi.org/10.1214/18-AOP1265, doi:10.1214/18-AOP1265.

[Die10]

Kai Diethelm. The analysis of fractional differential equations. Volume 2004 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2010. ISBN 978-3-642-14573-5. An application-oriented exposition using differential operators of Caputo type. URL: https://doi.org/10.1007/978-3-642-14574-2, doi:10.1007/978-3-642-14574-2.

[Dim11]

Yuriy I. Dimitrienko. Nonlinear continuum mechanics and large inelastic deformations. Volume 174 of Solid Mechanics and its Applications. Springer, Dordrecht, 2011. ISBN 978-94-007-0033-8; 978-94-007-0034-5. URL: https://doi.org/10.1007/978-94-007-0034-5, doi:10.1007/978-94-007-0034-5.

[DE86]

Masao Doi and Sam F Edwards. The theory of polymer dynamics. Oxford university press, 1986. ISBN 198520336, 9780198520337.

[DJ72]

C Domb and G S Joyce. Cluster expansion for a polymer chain. J. Phys. C: Solid State Phys., 5(9):956, may 1972. URL: https://dx.doi.org/10.1088/0022-3719/5/9/009, doi:10.1088/0022-3719/5/9/009.

[DS89]

David L. Donoho and Philip B. Stark. Uncertainty principles and signal recovery. SIAM J. Appl. Math., 49(3):906–931, 1989. URL: https://doi.org/10.1137/0149053, doi:10.1137/0149053.

[Doo90]

J. L. Doob. Stochastic processes. Wiley Classics Library. John Wiley & Sons, Inc., New York, 1990. ISBN 0-471-52369-0. Reprint of the 1953 original, A Wiley-Interscience Publication.

[Dud67]

R. M. Dudley. The sizes of compact subsets of Hilbert space and continuity of Gaussian processes. J. Functional Analysis, 1:290–330, 1967. URL: https://doi.org/10.1016/0022-1236(67)90017-1, doi:10.1016/0022-1236(67)90017-1.

[DGRZ21]

Alexander Dunlap, Yu Gu, Lenya Ryzhik, and Ofer Zeitouni. The random heat equation in dimensions three and higher: the homogenization viewpoint. Arch. Ration. Mech. Anal., 242(2):827–873, 2021. URL: https://doi.org/10.1007/s00205-021-01694-9, doi:10.1007/s00205-021-01694-9.

[DM76]

H. Dym and H. P. McKean. Gaussian processes, function theory, and the inverse spectral problem. Probability and Mathematical Statistics, Vol. 31. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976.

[EH01]

Jean-Pierre Eckmann and Martin Hairer. Invariant measures for stochastic partial differential equations in unbounded domains. Nonlinearity, 14(1):133–151, 2001. URL: https://doi.org/10.1088/0951-7715/14/1/308, doi:10.1088/0951-7715/14/1/308.

[ES92]

G. A. Edgar and Louis Sucheston. Stopping times and directed processes. Volume 47 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1992. ISBN 0-521-35023-9. URL: https://doi.org/10.1017/CBO9780511574740, doi:10.1017/CBO9780511574740.

[Edw65]

S. F. Edwards. The statistical mechanics of polymers with excluded volume. Proc. Phys. Soc., 85:613–624, 1965.

[EIK04]

Samuil D. Eidelman, Stepan D. Ivasyshen, and Anatoly N. Kochubei. Analytic methods in the theory of differential and pseudo-differential equations of parabolic type. Volume 152 of Operator Theory: Advances and Applications. Birkhäuser Verlag, Basel, 2004. ISBN 3-7643-7115-3. URL: https://doi.org/10.1007/978-3-0348-7844-9, doi:10.1007/978-3-0348-7844-9.

[EK04]

Samuil D. Eidelman and Anatoly N. Kochubei. Cauchy problem for fractional diffusion equations. J. Differential Equations, 199(2):211–255, 2004. URL: https://doi.org/10.1016/j.jde.2003.12.002, doi:10.1016/j.jde.2003.12.002.

[EMOT54]

A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi. Tables of integral transforms. Vol. I. McGraw-Hill Book Company, Inc., New York-Toronto-London, 1954. Based, in part, on notes left by Harry Bateman.

[EMOT81a]

Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, and Francesco G. Tricomi. Higher transcendental functions. Vol. III. Robert E. Krieger Publishing Co., Inc., Melbourne, Fla., 1981. ISBN 0-89874-069-X. Based on notes left by Harry Bateman, Reprint of the 1955 original.

[EMOT81b]

Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, and Francesco G. Tricomi. Higher transcendental functions. Vol. I. Robert E. Krieger Publishing Co., Inc., Melbourne, Fla., 1981. ISBN 0-89874-069-X. Based on notes left by Harry Bateman, With a preface by Mina Rees, With a foreword by E. C. Watson, Reprint of the 1953 original.

[EPW67]

J. D. Esary, F. Proschan, and D. W. Walkup. Association of random variables, with applications. Ann. Math. Statist., 38:1466–1474, 1967. URL: https://doi.org/10.1214/aoms/1177698701, doi:10.1214/aoms/1177698701.

[Eth00]

Alison M. Etheridge. An introduction to superprocesses. Volume 20 of University Lecture Series. American Mathematical Society, Providence, RI, 2000. ISBN 0-8218-2706-5. URL: https://doi.org/10.1090/ulect/020, doi:10.1090/ulect/020.

[EK86]

Stewart N. Ethier and Thomas G. Kurtz. Markov processes. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons, Inc., New York, 1986. ISBN 0-471-08186-8. Characterization and convergence. URL: https://doi.org/10.1002/9780470316658, doi:10.1002/9780470316658.

[FZ05]

Shizan Fang and Tusheng Zhang. A study of a class of stochastic differential equations with non-Lipschitzian coefficients. Probab. Theory Related Fields, 132(3):356–390, 2005. URL: https://doi.org/10.1007/s00440-004-0398-z, doi:10.1007/s00440-004-0398-z.

[Fed69]

Herbert Federer. Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer-Verlag New York, Inc., New York, 1969.

[Fel52]

William Feller. On a generalization of Marcel Riesz' potentials and the semi-groups generated by them. Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.], 1952(Tome Supplémentaire):72–81, 1952.

[Fer71]

Xavier Fernique. Régularité de processus gaussiens. Invent. Math., 12:304–320, 1971. URL: https://doi.org/10.1007/BF01403310, doi:10.1007/BF01403310.

[FBG09]

Julian Fernández Bonder and Pablo Groisman. Time-space white noise eliminates global solutions in reaction-diffusion equations. Phys. D, 238(2):209–215, 2009. URL: https://doi.org/10.1016/j.physd.2008.09.005, doi:10.1016/j.physd.2008.09.005.

[Fer80]

John D. Ferry. Viscoelastic properties of polymers. Wiley, 3rd ed edition, 1980. ISBN 978-0-471-04894-7.

[Fix62]

Marshall Fixman. Radius of gyration of polymer chains. J. Chem. Phys., 36(2):306–310, 01 1962. URL: https://doi.org/10.1063/1.1732501, arXiv:https://pubs.aip.org/aip/jcp/article-pdf/36/2/306/11125538/306\_1\_online.pdf, doi:10.1063/1.1732501.

[Fol95]

Gerald B. Folland. Introduction to partial differential equations. Princeton University Press, Princeton, NJ, second edition, 1995. ISBN 0-691-04361-2.

[FJ14]

Mohammud Foondun and Mathew Joseph. Remarks on non-linear noise excitability of some stochastic heat equations. Stochastic Process. Appl., 124(10):3429–3440, 2014. URL: https://doi.org/10.1016/j.spa.2014.04.015, doi:10.1016/j.spa.2014.04.015.

[FJL18]

Mohammud Foondun, Mathew Joseph, and Shiu-Tang Li. An approximation result for a class of stochastic heat equations with colored noise. Ann. Appl. Probab., 28(5):2855–2895, 2018. URL: https://doi.org/10.1214/17-AAP1376, doi:10.1214/17-AAP1376.

[FK09]

Mohammud Foondun and Davar Khoshnevisan. Intermittence and nonlinear parabolic stochastic partial differential equations. Electron. J. Probab., 14:no. 21, 548–568, 2009. URL: https://doi.org/10.1214/EJP.v14-614, doi:10.1214/EJP.v14-614.

[FK10]

Mohammud Foondun and Davar Khoshnevisan. On the global maximum of the solution to a stochastic heat equation with compact-support initial data. Ann. Inst. Henri Poincaré Probab. Stat., 46(4):895–907, 2010. URL: https://doi.org/10.1214/09-AIHP328, doi:10.1214/09-AIHP328.

[FK13]

Mohammud Foondun and Davar Khoshnevisan. On the stochastic heat equation with spatially-colored random forcing. Trans. Amer. Math. Soc., 365(1):409–458, 2013. URL: https://doi.org/10.1090/S0002-9947-2012-05616-9, doi:10.1090/S0002-9947-2012-05616-9.

[FK14]

Mohammud Foondun and Davar Khoshnevisan. Corrections and improvements to: “On the stochastic heat equation with spatially-colored random forcing” [mr2984063]. Trans. Amer. Math. Soc., 366(1):561–562, 2014. URL: https://doi.org/10.1090/S0002-9947-2013-06201-0, doi:10.1090/S0002-9947-2013-06201-0.

[FKM15]

Mohammud Foondun, Davar Khoshnevisan, and Pejman Mahboubi. Analysis of the gradient of the solution to a stochastic heat equation via fractional Brownian motion. Stoch. Partial Differ. Equ. Anal. Comput., 3(2):133–158, 2015. URL: https://doi.org/10.1007/s40072-015-0045-y, doi:10.1007/s40072-015-0045-y.

[FKN11]

Mohammud Foondun, Davar Khoshnevisan, and Eulalia Nualart. A local-time correspondence for stochastic partial differential equations. Trans. Amer. Math. Soc., 363(5):2481–2515, 2011. URL: https://doi.org/10.1090/S0002-9947-2010-05017-2, doi:10.1090/S0002-9947-2010-05017-2.

[FLO17]

Mohammud Foondun, Wei Liu, and McSylvester Omaba. Moment bounds for a class of fractional stochastic heat equations. Ann. Probab., 45(4):2131–2153, 2017. URL: https://doi.org/10.1214/16-AOP1108, doi:10.1214/16-AOP1108.

[FN15]

Mohammud Foondun and Eulalia Nualart. On the behaviour of stochastic heat equations on bounded domains. ALEA Lat. Am. J. Probab. Math. Stat., 12(2):551–571, 2015.

[FN21]

Mohammud Foondun and Eulalia Nualart. The Osgood condition for stochastic partial differential equations. Bernoulli, 27(1):295–311, 2021. URL: https://doi.org/10.3150/20-BEJ1240, doi:10.3150/20-BEJ1240.

[FN22]

Mohammud Foondun and Eulalia Nualart. Non-existence results for stochastic wave equations in one dimension. J. Differential Equations, 318:557–578, 2022. URL: https://doi.org/10.1016/j.jde.2022.02.038, doi:10.1016/j.jde.2022.02.038.

[Fox61]

Charles Fox. The $G$ and $H$ functions as symmetrical Fourier kernels. Trans. Amer. Math. Soc., 98:395–429, 1961. URL: https://doi.org/10.2307/1993339, doi:10.2307/1993339.

[Fri63]

Avner Friedman. Generalized functions and partial differential equations. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1963.

[Fri75]

Avner Friedman. Stochastic differential equations and applications. Vol. 1. Probability and Mathematical Statistics, Vol. 28. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975.

[Fuj66]

Hiroshi Fujita. On the blowing up of solutions of the Cauchy problem for $u_t=\Delta u+u^1+\alpha $. J. Fac. Sci. Univ. Tokyo Sect. I, 13:109–124 (1966), 1966.

[FOT94]

Masatoshi Fukushima, Yoichi Ōshima, and Masayoshi Takeda. Dirichlet forms and symmetric Markov processes. Volume 19 of De Gruyter Studies in Mathematics. Walter de Gruyter & Co., Berlin, 1994. ISBN 3-11-011626-X. URL: https://doi.org/10.1515/9783110889741, doi:10.1515/9783110889741.

[GT82]

Bernard Gaveau and Philip Trauber. L'intégrale stochastique comme opérateur de divergence dans l'espace fonctionnel. J. Functional Analysis, 46(2):230–238, 1982. URL: https://doi.org/10.1016/0022-1236(82)90036-2, doi:10.1016/0022-1236(82)90036-2.

[Gaw84]

Wolfgang Gawronski. On the bell-shape of stable densities. Ann. Probab., 12(1):230–242, 1984. URL: http://links.jstor.org/sici?sici=0091-1798(198402)12:1<230:OTBOSD>2.0.CO;2-A&origin=MSN.

[GM94]

Christel Geiß and Ralf Manthey. Comparison theorems for stochastic differential equations in finite and infinite dimensions. Stochastic Process. Appl., 53(1):23–35, 1994. URL: https://doi.org/10.1016/0304-4149(94)90055-8, doi:10.1016/0304-4149(94)90055-8.

[Gel14]

Zachary A. Gelbaum. Fractional Brownian fields over manifolds. Trans. Amer. Math. Soc., 366(9):4781–4814, 2014. URL: https://doi.org/10.1090/S0002-9947-2014-06106-0, doi:10.1090/S0002-9947-2014-06106-0.

[GV16]

I. M. Gelfand and N. Ya. Vilenkin. Generalized functions. Vol. 4. AMS Chelsea Publishing, Providence, RI, 2016. ISBN 978-1-4704-2662-0. Applications of harmonic analysis, Translated from the 1961 Russian original [ MR0146653] by Amiel Feinstein, Reprint of the 1964 English translation [ MR0173945]. URL: https://doi.org/10.1090/chel/380, doi:10.1090/chel/380.

[GJKS15]

Nicos Georgiou, Mathew Joseph, Davar Khoshnevisan, and Shang-Yuan Shiu. Semi-discrete semi-linear parabolic SPDEs. Ann. Appl. Probab., 25(5):2959–3006, 2015. URL: https://doi.org/10.1214/14-AAP1065, doi:10.1214/14-AAP1065.

[GHL23]

Luca Gerolla, Martin Hairer, and Xue-Mei Li. Fluctuations of stochastic pdes with long-range correlations. Preprint arXiv:2303.09811, March 2023. URL: http://arXiv.org/abs/2303.09811.

[Gra14]

Loukas Grafakos. Modern Fourier analysis. Volume 250 of Graduate Texts in Mathematics. Springer, New York, third edition, 2014. ISBN 978-1-4939-1229-2; 978-1-4939-1230-8. URL: https://doi.org/10.1007/978-1-4939-1230-8, doi:10.1007/978-1-4939-1230-8.

[GdH93]

Andreas Greven and Frank den Hollander. A variational characterization of the speed of a one-dimensional self-repellent random walk. Ann. Appl. Probab., 3(4):1067–1099, 1993. URL: http://links.jstor.org/sici?sici=1050-5164(199311)3:4<1067:AVCOTS>2.0.CO;2-Q&origin=MSN.

[Gri85]

Pierre Grisvard. Elliptic problems in nonsmooth domains. Volume 24 of Monographs and Studies in Mathematics. Pitman (Advanced Publishing Program), Boston, MA, 1985. ISBN 0-273-08647-2.

[GOdSS11]

Martin Grothaus, Maria João Oliveira, José Luís da Silva, and Ludwig Streit. Self-avoiding fractional Brownian motion—the Edwards model. J. Stat. Phys., 145(6):1513–1523, 2011. URL: https://doi.org/10.1007/s10955-011-0344-2, doi:10.1007/s10955-011-0344-2.

[GL20]

Yu Gu and Jiawei Li. Fluctuations of a nonlinear stochastic heat equation in dimensions three and higher. SIAM J. Math. Anal., 52(6):5422–5440, 2020. URL: https://doi.org/10.1137/19M1296380, doi:10.1137/19M1296380.

[GUZ20]

M. Gubinelli, B. Ugurcan, and I. Zachhuber. Semilinear evolution equations for the Anderson Hamiltonian in two and three dimensions. Stoch. Partial Differ. Equ. Anal. Comput., 8(1):82–149, 2020. URL: https://doi.org/10.1007/s40072-019-00143-9, doi:10.1007/s40072-019-00143-9.

[GP17]

Massimiliano Gubinelli and Nicolas Perkowski. KPZ reloaded. Comm. Math. Phys., 349(1):165–269, 2017. URL: https://doi.org/10.1007/s00220-016-2788-3, doi:10.1007/s00220-016-2788-3.

[GN20]

Ngartelbaye Guerngar and Erkan Nane. Moment bounds of a class of stochastic heat equations driven by space-time colored noise in bounded domains. Stochastic Process. Appl., 130(10):6246–6270, 2020. URL: https://doi.org/10.1016/j.spa.2020.05.009, doi:10.1016/j.spa.2020.05.009.

[GSS23]

Yuhui Guo, Jian Song, and Xiaoming Song. Stochastic fractional diffusion equations with gaussian noise rough in space. Preprint arXiv:2303.11939, March 2023. URL: http://arXiv.org/abs/2303.11939.

[GG06]

Peter Guttorp and Tilmann Gneiting. Studies in the history of probability and statistics. XLIX. On the Matérn correlation family. Biometrika, 93(4):989–995, 2006. URL: https://doi.org/10.1093/biomet/93.4.989, doi:10.1093/biomet/93.4.989.

[Hai14]

M. Hairer. A theory of regularity structures. Invent. Math., 198(2):269–504, 2014. URL: https://doi.org/10.1007/s00222-014-0505-4, doi:10.1007/s00222-014-0505-4.

[Hai13]

Martin Hairer. Solving the KPZ equation. Ann. of Math. (2), 178(2):559–664, 2013. URL: https://doi.org/10.4007/annals.2013.178.2.4, doi:10.4007/annals.2013.178.2.4.

[HL15]

Martin Hairer and Cyril Labbé. A simple construction of the continuum parabolic Anderson model on $\bf R^2$. Electron. Commun. Probab., 20:no. 43, 11, 2015. URL: https://doi.org/10.1214/ECP.v20-4038, doi:10.1214/ECP.v20-4038.

[HL18]

Martin Hairer and Cyril Labbé. Multiplicative stochastic heat equations on the whole space. J. Eur. Math. Soc. (JEMS), 20(4):1005–1054, 2018. URL: https://doi.org/10.4171/JEMS/781, doi:10.4171/JEMS/781.

[HM06]

Martin Hairer and Jonathan C. Mattingly. Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing. Ann. of Math. (2), 164(3):993–1032, 2006. URL: https://doi.org/10.4007/annals.2006.164.993, doi:10.4007/annals.2006.164.993.

[HP15]

Martin Hairer and Étienne Pardoux. A Wong-Zakai theorem for stochastic PDEs. J. Math. Soc. Japan, 67(4):1551–1604, 2015. URL: https://doi.org/10.2969/jmsj/06741551, doi:10.2969/jmsj/06741551.

[Haj85]

Bruce Hajek. Mean stochastic comparison of diffusions. Z. Wahrsch. Verw. Gebiete, 68(3):315–329, 1985. URL: https://doi.org/10.1007/BF00532643, doi:10.1007/BF00532643.

[HS91]

Takashi Hara and Gordon Slade. Critical behaviour of self-avoiding walk in five or more dimensions. Bull. Amer. Math. Soc. (N.S.), 25(2):417–423, 1991. URL: https://doi.org/10.1090/S0273-0979-1991-16085-4, doi:10.1090/S0273-0979-1991-16085-4.

[HS92]

Takashi Hara and Gordon Slade. Self-avoiding walk in five or more dimensions. I. The critical behaviour. Comm. Math. Phys., 147(1):101–136, 1992. URL: http://projecteuclid.org/euclid.cmp/1104250528.

[Haw79]

John Hawkes. Potential theory of Lévy processes. Proc. London Math. Soc. (3), 38(2):335–352, 1979. URL: https://doi.org/10.1112/plms/s3-38.2.335, doi:10.1112/plms/s3-38.2.335.

[Haw84]

John Hawkes. Some geometric aspects of potential theory. In Stochastic analysis and applications (Swansea, 1983), volume 1095 of Lecture Notes in Math., pages 130–154. Springer, Berlin, 1984. URL: https://doi.org/10.1007/BFb0099126, doi:10.1007/BFb0099126.

[HS67]

Henry Helson and Donald Sarason. Past and future. Math. Scand., 21:5–16 (1968), 1967. URL: https://doi.org/10.7146/math.scand.a-10840, doi:10.7146/math.scand.a-10840.

[HP05]

Antoine Henrot and Michel Pierre. Variation et optimisation de formes. Volume 48 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer, Berlin, 2005. ISBN 978-3-540-26211-4; 3-540-26211-3. Une analyse géométrique. [A geometric analysis]. URL: https://doi.org/10.1007/3-540-37689-5, doi:10.1007/3-540-37689-5.

[Hoc78]

Kenneth J. Hochberg. A signed measure on path space related to Wiener measure. Ann. Probab., 6(3):433–458, 1978. URL: http://links.jstor.org/sici?sici=0091-1798(197806)6:3<433:ASMOPS>2.0.CO;2-N&origin=MSN.

[Hoe63]

Wassily Hoeffding. Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc., 58:13–30, 1963. URL: http://links.jstor.org/sici?sici=0162-1459(196303)58:301<13:PIFSOB>2.0.CO;2-D&origin=MSN.

[HH15]

Guannan Hu and Yaozhong Hu. Fractional diffusion in gaussian noisy environment. Mathematics, 3(2):131–152, 2015. URL: https://www.mdpi.com/2227-7390/3/2/131.

[Hu01]

Y. Hu. Heat equations with fractional white noise potentials. Appl. Math. Optim., 43(3):221–243, 2001. URL: https://doi.org/10.1007/s00245-001-0001-2, doi:10.1007/s00245-001-0001-2.

[Hu02]

Yaozhong Hu. Chaos expansion of heat equations with white noise potentials. Potential Anal., 16(1):45–66, 2002. URL: https://doi.org/10.1023/A:1024878703232, doi:10.1023/A:1024878703232.

[Hu17]

Yaozhong Hu. Analysis on Gaussian spaces. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017. ISBN 978-981-3142-17-6.

[HHL+17]

Yaozhong Hu, Jingyu Huang, Khoa Lê, David Nualart, and Samy Tindel. Stochastic heat equation with rough dependence in space. Ann. Probab., 45(6B):4561–4616, 2017. URL: https://doi.org/10.1214/16-AOP1172, doi:10.1214/16-AOP1172.

[HHL+18]

Yaozhong Hu, Jingyu Huang, Khoa Lê, David Nualart, and Samy Tindel. Parabolic Anderson model with rough dependence in space. In Computation and combinatorics in dynamics, stochastics and control, volume 13 of Abel Symp., pages 477–498. Springer, Cham, 2018.

[HHN16]

Yaozhong Hu, Jingyu Huang, and David Nualart. On the intermittency front of stochastic heat equation driven by colored noises. Electron. Commun. Probab., 21:Paper No. 21, 13, 2016. URL: https://doi.org/10.1214/16-ECP4364, doi:10.1214/16-ECP4364.

[HHNS15]

Yaozhong Hu, Jingyu Huang, David Nualart, and Xiaobin Sun. Smoothness of the joint density for spatially homogeneous SPDEs. J. Math. Soc. Japan, 67(4):1605–1630, 2015. URL: https://doi.org/10.2969/jmsj/06741605, doi:10.2969/jmsj/06741605.

[HHNT15]

Yaozhong Hu, Jingyu Huang, David Nualart, and Samy Tindel. Stochastic heat equations with general multiplicative Gaussian noises: Hölder continuity and intermittency. Electron. J. Probab., 20:no. 55, 50, 2015. URL: https://doi.org/10.1214/EJP.v20-3316, doi:10.1214/EJP.v20-3316.

[HLN12]

Yaozhong Hu, Fei Lu, and David Nualart. Feynman-Kac formula for the heat equation driven by fractional noise with Hurst parameter $H<1/2$. Ann. Probab., 40(3):1041–1068, 2012. URL: https://doi.org/10.1214/11-AOP649, doi:10.1214/11-AOP649.

[HL17]

Yaozhong Hu and Khoa Lê. Nonlinear Young integrals and differential systems in Hölder media. Trans. Amer. Math. Soc., 369(3):1935–2002, 2017. URL: https://doi.org/10.1090/tran/6774, doi:10.1090/tran/6774.

[HL19]

Yaozhong Hu and Khoa Lê. Joint Hölder continuity of parabolic Anderson model. Acta Math. Sci. Ser. B (Engl. Ed.), 39(3):764–780, 2019. URL: https://doi.org/10.1007/s10473-019-0309-0, doi:10.1007/s10473-019-0309-0.

[HN05]

Yaozhong Hu and David Nualart. Renormalized self-intersection local time for fractional Brownian motion. Ann. Probab., 33(3):948–983, 2005. URL: https://doi.org/10.1214/009117905000000017, doi:10.1214/009117905000000017.

[HN09]

Yaozhong Hu and David Nualart. Stochastic heat equation driven by fractional noise and local time. Probab. Theory Related Fields, 143(1-2):285–328, 2009. URL: https://doi.org/10.1007/s00440-007-0127-5, doi:10.1007/s00440-007-0127-5.

[HNS09]

Yaozhong Hu, David Nualart, and Jian Song. Fractional martingales and characterization of the fractional Brownian motion. Ann. Probab., 37(6):2404–2430, 2009. URL: https://doi.org/10.1214/09-AOP464, doi:10.1214/09-AOP464.

[HNS11]

Yaozhong Hu, David Nualart, and Jian Song. Feynman-Kac formula for heat equation driven by fractional white noise. Ann. Probab., 39(1):291–326, 2011. URL: https://doi.org/10.1214/10-AOP547, doi:10.1214/10-AOP547.

[HW21]

Yaozhong Hu and Xiong Wang. Intermittency properties for a large class of stochastic pdes driven by fractional space-time noises. Preprint arXiv:2109.03473, to appear in Stoch. Partial Differ. Equ. Anal. Comput., September 2021. URL: https://www.arxiv.org/abs/2109.03473.

[HWXZ23]

Yaozhong Hu, Xiong Wang, Panqiu Xia, and Jiayu Zheng. Moment asymptotics for super-brownian motions. Preprint arXiv:2303.12994, March 2023. URL: http://arXiv.org/abs/2303.12994.

[Hua17]

Jingyu Huang. On stochastic heat equation with measure initial data. Electron. Commun. Probab., 22:Paper No. 40, 6, 2017. URL: https://doi.org/10.1214/17-ECP71, doi:10.1214/17-ECP71.

[HLN17a]

Jingyu Huang, Khoa Lê, and David Nualart. Large time asymptotics for the parabolic Anderson model driven by space and time correlated noise. Stoch. Partial Differ. Equ. Anal. Comput., 5(4):614–651, 2017. URL: https://doi.org/10.1007/s40072-017-0099-0, doi:10.1007/s40072-017-0099-0.

[HLN17b]

Jingyu Huang, Khoa Lê, and David Nualart. Large time asymptotics for the parabolic Anderson model driven by spatially correlated noise. Ann. Inst. Henri Poincaré Probab. Stat., 53(3):1305–1340, 2017. URL: https://doi.org/10.1214/16-AIHP756, doi:10.1214/16-AIHP756.

[HNV20]

Jingyu Huang, David Nualart, and Lauri Viitasaari. A central limit theorem for the stochastic heat equation. Stochastic Process. Appl., 130(12):7170–7184, 2020. URL: https://doi.org/10.1016/j.spa.2020.07.010, doi:10.1016/j.spa.2020.07.010.

[HNVZ20]

Jingyu Huang, David Nualart, Lauri Viitasaari, and Guangqu Zheng. Gaussian fluctuations for the stochastic heat equation with colored noise. Stoch. Partial Differ. Equ. Anal. Comput., 8(2):402–421, 2020. URL: https://doi.org/10.1007/s40072-019-00149-3, doi:10.1007/s40072-019-00149-3.

[Ibr62]

I. A. Ibragimov. Some limit theorems for stationary processes. Teor. Verojatnost. i Primenen., 7:361–392, 1962.

[IW89]

Nobuyuki Ikeda and Shinzo Watanabe. Stochastic differential equations and diffusion processes. Volume 24 of North-Holland Mathematical Library. North-Holland Publishing Co., Amsterdam; Kodansha, Ltd., Tokyo, second edition, 1989. ISBN 0-444-87378-3.

[JT03]

Saul Jacka and Roger Tribe. Comparisons for measure valued processes with interactions. Ann. Probab., 31(3):1679–1712, 2003. URL: https://doi.org/10.1214/aop/1055425794, doi:10.1214/aop/1055425794.

[Jak91]

Adam Jakubowski. Asymptotic independent representations for sums and order statistics of stationary sequences. Published by the author, 1991. URL: http://www-users.mat.uni.torun.pl/~adjakubo/hab.pdf.

[Jan97]

Svante Janson. Gaussian Hilbert spaces. Volume 129 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1997. ISBN 0-521-56128-0. URL: https://doi.org/10.1017/CBO9780511526169, doi:10.1017/CBO9780511526169.

[Joh91]

Fritz John. Partial differential equations. Volume 1 of Applied Mathematical Sciences. Springer-Verlag, New York, fourth edition, 1991. ISBN 0-387-90609-6.

[JKM17]

Mathew Joseph, Davar Khoshnevisan, and Carl Mueller. Strong invariance and noise-comparison principles for some parabolic stochastic PDEs. Ann. Probab., 45(1):377–403, 2017. URL: https://doi.org/10.1214/15-AOP1009, doi:10.1214/15-AOP1009.

[Kah85]

Jean-Pierre Kahane. Some random series of functions. Volume 5 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, second edition, 1985. ISBN 0-521-24966-X; 0-521-45602-9.

[KM15]

Kamran Kalbasi and Thomas S. Mountford. Feynman-Kac representation for the parabolic Anderson model driven by fractional noise. J. Funct. Anal., 269(5):1234–1263, 2015. URL: https://doi.org/10.1016/j.jfa.2015.06.003, doi:10.1016/j.jfa.2015.06.003.

[Kal02]

Olav Kallenberg. Foundations of modern probability. Probability and its Applications (New York). Springer-Verlag, New York, second edition, 2002. ISBN 0-387-95313-2. URL: https://doi.org/10.1007/978-1-4757-4015-8, doi:10.1007/978-1-4757-4015-8.

[KS91]

Ioannis Karatzas and Steven E. Shreve. Brownian motion and stochastic calculus. Volume 113 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1991. ISBN 0-387-97655-8. URL: https://doi.org/10.1007/978-1-4612-0949-2, doi:10.1007/978-1-4612-0949-2.

[KZ01]

Anna Karczewska and Jerzy Zabczyk. A note on stochastic wave equations. In Evolution equations and their applications in physical and life sciences (Bad Herrenalb, 1998), volume 215 of Lecture Notes in Pure and Appl. Math., pages 501–511. Dekker, New York, 2001.

[Kar87]

Mehran Kardar. Replica Bethe ansatz studies of two-dimensional interfaces with quenched random impurities. Nuclear Phys. B, 290(4):582–602, 1987. URL: https://doi.org/10.1016/0550-3213(87)90203-3, doi:10.1016/0550-3213(87)90203-3.

[KPZ86]

Mehran Kardar, Giorgio Parisi, and Yi-Cheng Zhang. Dynamic scaling of growing interfaces. Phys. Rev. Lett., 56(9):889, 1986. URL: https://doi.org/10.1103/PhysRevLett.56.889, doi:10.1103/PhysRevLett.56.889.

[Kev00]

J. Kevorkian. Partial differential equations. Volume 35 of Texts in Applied Mathematics. Springer-Verlag, New York, second edition, 2000. ISBN 0-387-98605-7. Analytical solution techniques. URL: https://doi.org/10.1007/978-1-4757-3266-5, doi:10.1007/978-1-4757-3266-5.

[Kho02]

Davar Khoshnevisan. Multiparameter processes. Springer Monographs in Mathematics. Springer-Verlag, New York, 2002. ISBN 0-387-95459-7. An introduction to random fields. URL: https://doi.org/10.1007/b97363, doi:10.1007/b97363.

[Kho09]

Davar Khoshnevisan. A primer on stochastic partial differential equations. In A minicourse on stochastic partial differential equations, volume 1962 of Lecture Notes in Math., pages 1–38. Springer, Berlin, 2009. URL: https://doi.org/10.1007/978-3-540-85994-9_1, doi:10.1007/978-3-540-85994-9\_1.

[Kho14]

Davar Khoshnevisan. Analysis of stochastic partial differential equations. Volume 119 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2014. ISBN 978-1-4704-1547-1. URL: https://doi.org/10.1090/cbms/119, doi:10.1090/cbms/119.

[KK15]

Davar Khoshnevisan and Kunwoo Kim. Non-linear noise excitation and intermittency under high disorder. Proc. Amer. Math. Soc., 143(9):4073–4083, 2015. URL: https://doi.org/10.1090/S0002-9939-2015-12517-8, doi:10.1090/S0002-9939-2015-12517-8.

[KKX17]

Davar Khoshnevisan, Kunwoo Kim, and Yimin Xiao. Intermittency and multifractality: a case study via parabolic stochastic PDEs. Ann. Probab., 45(6A):3697–3751, 2017. URL: https://doi.org/10.1214/16-AOP1147, doi:10.1214/16-AOP1147.

[KKX18]

Davar Khoshnevisan, Kunwoo Kim, and Yimin Xiao. A macroscopic multifractal analysis of parabolic stochastic PDEs. Comm. Math. Phys., 360(1):307–346, 2018. URL: https://doi.org/10.1007/s00220-018-3136-6, doi:10.1007/s00220-018-3136-6.

[KSXZ13]

Davar Khoshnevisan, Jason Swanson, Yimin Xiao, and Liang Zhang. Weak existence of a solution to a differential equation driven by a very rough fbm. Preprint arXiv:1309.3613, September 2013. URL: http://arXiv.org/abs/1309.3613.

[KX03]

Davar Khoshnevisan and Yimin Xiao. Weak unimodality of finite measures, and an application to potential theory of additive Lévy processes. Proc. Amer. Math. Soc., 131(8):2611–2616, 2003. URL: https://doi.org/10.1090/S0002-9939-02-06778-3, doi:10.1090/S0002-9939-02-06778-3.

[KS04]

Anatoly A. Kilbas and Megumi Saigo. $H$-transforms. Volume 9 of Analytical Methods and Special Functions. Chapman & Hall/CRC, Boca Raton, FL, 2004. ISBN 0-415-29916-0. Theory and applications. URL: https://doi.org/10.1201/9780203487372, doi:10.1201/9780203487372.

[KST06]

Anatoly A. Kilbas, Hari M. Srivastava, and Juan J. Trujillo. Theory and applications of fractional differential equations. Volume 204 of North-Holland Mathematics Studies. Elsevier Science B.V., Amsterdam, 2006. ISBN 978-0-444-51832-3; 0-444-51832-0.

[Kim19]

Kunwoo Kim. On the large-scale structure of the tall peaks for stochastic heat equations with fractional Laplacian. Stochastic Process. Appl., 129(6):2207–2227, 2019. URL: https://doi.org/10.1016/j.spa.2018.07.006, doi:10.1016/j.spa.2018.07.006.

[Kla12]

Y. Klausner. Fundamentals of Continuum Mechanics of Soils. Springer London, 2012. ISBN 978-1-4471-1677-6. doi:https://doi.org/10.1007/978-1-4471-1677-6.

[Koc90]

A. N. Kochubeui. Diffusion of fractional order. Differentsialnye Uravneniya, 26(4):660–670, 733–734, 1990.

[KG96]

Kiran M. Kolwankar and Anil D. Gangal. Fractional differentiability of nowhere differentiable functions and dimensions. Chaos, 6(4):505–513, 1996. URL: https://doi.org/10.1063/1.166197, doi:10.1063/1.166197.

[KG98]

Kiran M. Kolwankar and Anil D. Gangal. Local fractional Fokker-Planck equation. Phys. Rev. Lett., 80(2):214–217, 1998. URL: https://doi.org/10.1103/PhysRevLett.80.214, doi:10.1103/PhysRevLett.80.214.

[Kom84]

Takashi Komatsu. On the martingale problem for generators of stable processes with perturbations. Osaka J. Math., 21(1):113–132, 1984. URL: http://projecteuclid.org/euclid.ojm/1200776873.

[KS88]

N. Konno and T. Shiga. Stochastic partial differential equations for some measure-valued diffusions. Probab. Theory Related Fields, 79(2):201–225, 1988. URL: https://doi.org/10.1007/BF00320919, doi:10.1007/BF00320919.

[Kot92]

Peter Kotelenez. Comparison methods for a class of function valued stochastic partial differential equations. Probab. Theory Related Fields, 93(1):1–19, 1992. URL: https://doi.org/10.1007/BF01195385, doi:10.1007/BF01195385.

[Kry60]

V. Ju. Krylov. Some properties of the distribution corresponding to the equation $\partial u/\partial t=(-1)^q+1 \partial ^2qu/\partial x^2q$. Soviet Math. Dokl., 1:760–763, 1960.

[Kun90]

Hiroshi Kunita. Stochastic flows and stochastic differential equations. Volume 24 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1990. ISBN 0-521-35050-6.

[Kuo06]

Hui-Hsiung Kuo. Introduction to stochastic integration. Universitext. Springer, New York, 2006. ISBN 978-0387-28720-1; 0-387-28720-5.

[Kon16]

Wolfgang König. The parabolic Anderson model. Pathways in Mathematics. Birkhäuser/Springer, [Cham], 2016. ISBN 978-3-319-33595-7; 978-3-319-33596-4. Random walk in random potential. URL: https://doi.org/10.1007/978-3-319-33596-4, doi:10.1007/978-3-319-33596-4.

[Lab13]

Cyril Labbé. Quasi-stationary distributions associated with explosive CSBP. Electron. Commun. Probab., 18:no. 57, 13, 2013. URL: https://doi.org/10.1214/ECP.v18-2508, doi:10.1214/ECP.v18-2508.

[Lab19]

Cyril Labbé. The continuous Anderson Hamiltonian in $d\leq 3$. J. Funct. Anal., 277(9):3187–3235, 2019. URL: https://doi.org/10.1016/j.jfa.2019.05.027, doi:10.1016/j.jfa.2019.05.027.

[Lah03]

S. N. Lahiri. A necessary and sufficient condition for asymptotic independence of discrete Fourier transforms under short- and long-range dependence. Ann. Statist., 31(2):613–641, 2003. Dedicated to the memory of Herbert E. Robbins. URL: https://doi.org/10.1214/aos/1051027883, doi:10.1214/aos/1051027883.

[LaS49]

J. LaSalle. Uniqueness theorems and successive approximations. Ann. of Math. (2), 50:722–730, 1949. URL: https://doi.org/10.2307/1969559, doi:10.2307/1969559.

[LJL90]

Jean Lemaitre and Chaboche Jean-Louis. Mechanics of Solid Materials. Cambridge University Press, 02 1990. URL: https://cir.nii.ac.jp/crid/1360011145309511936, doi:10.1017/cbo9781139167970.

[LL01]

Elliott H. Lieb and Michael Loss. Analysis. Volume 14 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, second edition, 2001. ISBN 0-8218-2783-9. URL: https://doi.org/10.1090/gsm/014, doi:10.1090/gsm/014.

[Lig05]

Thomas M. Liggett. Interacting particle systems. Classics in Mathematics. Springer-Verlag, Berlin, 2005. ISBN 3-540-22617-6. Reprint of the 1985 original. URL: https://doi.org/10.1007/b138374, doi:10.1007/b138374.

[LRdS18]

Wei Liu, Michael Röckner, and José Luís da Silva. Quasi-linear (stochastic) partial differential equations with time-fractional derivatives. SIAM J. Math. Anal., 50(3):2588–2607, 2018. URL: https://doi.org/10.1137/17M1144593, doi:10.1137/17M1144593.

[LTF17]

Wei Liu, Kuanhou Tian, and Mohammud Foondun. On some properties of a class of fractional stochastic heat equations. J. Theoret. Probab., 30(4):1310–1333, 2017. URL: https://doi.org/10.1007/s10959-016-0684-6, doi:10.1007/s10959-016-0684-6.

[LSW21]

Wei-Liem Loh, Saifei Sun, and Jun Wen. On fixed-domain asymptotics, parameter estimation and isotropic Gaussian random fields with Matérn covariance functions. Ann. Statist., 49(6):3127–3152, 2021. URL: https://doi.org/10.1214/21-aos2077, doi:10.1214/21-aos2077.

[Luk70]

Eugene Lukacs. Characteristic functions. Hafner Publishing Co., New York, 1970. Second edition, revised and enlarged.

[LO73]

Dominique Lépingle and Jean-Yves Ouvrard. Martingales browniennes hilbertiennes. C. R. Acad. Sci. Paris Sér. A-B, 276:A1225–A1228, 1973.

[Le16]

Khoa Lê. A remark on a result of Xia Chen. Statist. Probab. Lett., 118:124–126, 2016. URL: https://doi.org/10.1016/j.spl.2016.06.004, doi:10.1016/j.spl.2016.06.004.

[Mad14]

Neal Madras. A lower bound for the end-to-end distance of the self-avoiding walk. Canad. Math. Bull., 57(1):113–118, 2014. URL: https://doi.org/10.4153/CMB-2012-022-6, doi:10.4153/CMB-2012-022-6.

[MS93]

Neal Madras and Gordon Slade. The self-avoiding walk. Probability and its Applications. Birkhäuser Boston, Inc., Boston, MA, 1993. ISBN 0-8176-3589-0.

[Mag10]

Richard L. Magin. Fractional calculus models of complex dynamics in biological tissues. Comput. Math. Appl., 59(5):1586–1593, 2010. URL: https://doi.org/10.1016/j.camwa.2009.08.039, doi:10.1016/j.camwa.2009.08.039.

[Mai10]

Francesco Mainardi. Fractional calculus and waves in linear viscoelasticity. Imperial College Press, London, 2010. ISBN 978-1-84816-329-4; 1-84816-329-0. An introduction to mathematical models. URL: https://doi.org/10.1142/9781848163300, doi:10.1142/9781848163300.

[MLP01]

Francesco Mainardi, Yuri Luchko, and Gianni Pagnini. The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal., 4(2):153–192, 2001.

[MR06]

Michael B. Marcus and Jay Rosen. Markov processes, Gaussian processes, and local times. Volume 100 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2006. ISBN 978-0-521-86300-1; 0-521-86300-7. URL: https://doi.org/10.1017/CBO9780511617997, doi:10.1017/CBO9780511617997.

[Mar49]

Gisir\B o Maruyama. The harmonic analysis of stationary stochastic processes. Mem. Fac. Sci. Kyūsyū Univ. A, 4:45–106, 1949.

[MSH10]

A. M. Mathai, Ram Kishore Saxena, and Hans J. Haubold. The $H$-function. Springer, New York, 2010. ISBN 978-1-4419-0915-2. Theory and applications. URL: https://doi.org/10.1007/978-1-4419-0916-9, doi:10.1007/978-1-4419-0916-9.

[MP06]

Jonathan C. Mattingly and Étienne Pardoux. Malliavin calculus for the stochastic 2D Navier-Stokes equation. Comm. Pure Appl. Math., 59(12):1742–1790, 2006. URL: https://doi.org/10.1002/cpa.20136, doi:10.1002/cpa.20136.

[MS23]

Avi Mayorcas and Harprit Singh. Singular spdes on homogeneous lie groups. Preprint arXiv:2301.05121, January 2023. URL: http://arXiv.org/abs/2301.05121.

[MerlevedePU06]

Florence Merlevède, Magda Peligrad, and Sergey Utev. Recent advances in invariance principles for stationary sequences. Probab. Surv., 3:1–36, 2006. URL: https://doi.org/10.1214/154957806100000202, doi:10.1214/154957806100000202.

[MN15]

Jebessa B. Mijena and Erkan Nane. Space-time fractional stochastic partial differential equations. Stochastic Process. Appl., 125(9):3301–3326, 2015. URL: https://doi.org/10.1016/j.spa.2015.04.008, doi:10.1016/j.spa.2015.04.008.

[MN16]

Jebessa B. Mijena and Erkan Nane. Intermittence and space-time fractional stochastic partial differential equations. Potential Anal., 44(2):295–312, 2016. URL: https://doi.org/10.1007/s11118-015-9512-3, doi:10.1007/s11118-015-9512-3.

[Mil02]

Anna Milian. Comparison theorems for stochastic evolution equations. Stoch. Stoch. Rep., 72(1-2):79–108, 2002. URL: https://doi.org/10.1080/10451120290008566, doi:10.1080/10451120290008566.

[MM01]

Annie Millet and Pierre-Luc Morien. On a nonlinear stochastic wave equation in the plane: existence and uniqueness of the solution. Ann. Appl. Probab., 11(3):922–951, 2001. URL: https://doi.org/10.1214/aoap/1015345353, doi:10.1214/aoap/1015345353.

[MSS99]

Annie Millet and Marta Sanz-Solé. A stochastic wave equation in two space dimension: smoothness of the law. Ann. Probab., 27(2):803–844, 1999. URL: https://doi.org/10.1214/aop/1022677387, doi:10.1214/aop/1022677387.

[MSS21]

Annie Millet and Marta Sanz-Solé. Global solutions to stochastic wave equations with superlinear coefficients. Stochastic Process. Appl., 139:175–211, 2021. URL: https://doi.org/10.1016/j.spa.2021.05.002, doi:10.1016/j.spa.2021.05.002.

[MSY16]

Oleksandr Misiats, Oleksandr Stanzhytskyi, and Nung Kwan Yip. Existence and uniqueness of invariant measures for stochastic reaction-diffusion equations in unbounded domains. J. Theoret. Probab., 29(3):996–1026, 2016. URL: https://doi.org/10.1007/s10959-015-0606-z, doi:10.1007/s10959-015-0606-z.

[MSY20]

Oleksandr Misiats, Oleksandr Stanzhytskyi, and Nung Kwan Yip. Invariant measures for stochastic reaction-diffusion equations with weakly dissipative nonlinearities. Stochastics, 92(8):1197–1222, 2020. URL: https://doi.org/10.1080/17442508.2019.1691212, doi:10.1080/17442508.2019.1691212.

[MF14]

Gregorio R. Moreno Flores. On the (strict) positivity of solutions of the stochastic heat equation. Ann. Probab., 42(4):1635–1643, 2014. URL: https://doi.org/10.1214/14-AOP911, doi:10.1214/14-AOP911.

[Mue91a]

Carl Mueller. Long time existence for the heat equation with a noise term. Probab. Theory Related Fields, 90(4):505–517, 1991. URL: https://doi.org/10.1007/BF01192141, doi:10.1007/BF01192141.

[Mue91b]

Carl Mueller. On the support of solutions to the heat equation with noise. Stochastics Stochastics Rep., 37(4):225–245, 1991. URL: https://doi.org/10.1080/17442509108833738, doi:10.1080/17442509108833738.

[Mue93]

Carl Mueller. Coupling and invariant measures for the heat equation with noise. Ann. Probab., 21(4):2189–2199, 1993. URL: https://doi.org/10.1214/aop/1176989016.

[Mue09]

Carl Mueller. Some tools and results for parabolic stochastic partial differential equations. In A minicourse on stochastic partial differential equations, volume 1962 of Lecture Notes in Math., pages 111–144. Springer, Berlin, 2009. URL: https://doi.org/10.1007/978-3-540-85994-9_4, doi:10.1007/978-3-540-85994-9\_4.

[MMP14]

Carl Mueller, Leonid Mytnik, and Edwin Perkins. Nonuniqueness for a parabolic SPDE with $\frac 34-\epsilon $-Hölder diffusion coefficients. Ann. Probab., 42(5):2032–2112, 2014. URL: https://doi.org/10.1214/13-AOP870, doi:10.1214/13-AOP870.

[MMQ11]

Carl Mueller, Leonid Mytnik, and Jeremy Quastel. Effect of noise on front propagation in reaction-diffusion equations of KPP type. Invent. Math., 184(2):405–453, 2011. URL: https://doi.org/10.1007/s00222-010-0292-5, doi:10.1007/s00222-010-0292-5.

[MMR21]

Carl Mueller, Leonid Mytnik, and Lenya Ryzhik. The speed of a random front for stochastic reaction-diffusion equations with strong noise. Comm. Math. Phys., 384(2):699–732, 2021. URL: https://doi.org/10.1007/s00220-021-04084-0, doi:10.1007/s00220-021-04084-0.

[MN23]

Carl Mueller and Eyal Neuman. The radius of a self-repelling star polymer. Preprint arXiv:2306.01537, June 2023. URL: http://arXiv.org/abs/2306.01537.

[MN08]

Carl Mueller and David Nualart. Regularity of the density for the stochastic heat equation. Electron. J. Probab., 13:no. 74, 2248–2258, 2008. URL: https://doi.org/10.1214/EJP.v13-589, doi:10.1214/EJP.v13-589.

[MP92]

Carl Mueller and Edwin A. Perkins. The compact support property for solutions to the heat equation with noise. Probab. Theory Related Fields, 93(3):325–358, 1992. URL: https://doi.org/10.1007/BF01193055, doi:10.1007/BF01193055.

[MT04]

Carl Mueller and Roger Tribe. A singular parabolic Anderson model. Electron. J. Probab., 9:no. 5, 98–144, 2004. URL: https://doi.org/10.1214/EJP.v9-189, doi:10.1214/EJP.v9-189.

[Myt98]

Leonid Mytnik. Weak uniqueness for the heat equation with noise. Ann. Probab., 26(3):968–984, 1998. URL: https://doi.org/10.1214/aop/1022855740, doi:10.1214/aop/1022855740.

[MP03]

Leonid Mytnik and Edwin Perkins. Regularity and irregularity of $(1+\beta )$-stable super-Brownian motion. Ann. Probab., 31(3):1413–1440, 2003. URL: https://doi.org/10.1214/aop/1055425785, doi:10.1214/aop/1055425785.

[MP11]

Leonid Mytnik and Edwin Perkins. Pathwise uniqueness for stochastic heat equations with Hölder continuous coefficients: the white noise case. Probab. Theory Related Fields, 149(1-2):1–96, 2011. URL: https://doi.org/10.1007/s00440-009-0241-7, doi:10.1007/s00440-009-0241-7.

[MPS06]

Leonid Mytnik, Edwin Perkins, and Anja Sturm. On pathwise uniqueness for stochastic heat equations with non-Lipschitz coefficients. Ann. Probab., 34(5):1910–1959, 2006. URL: https://doi.org/10.1214/009117906000000331, doi:10.1214/009117906000000331.

[MMV01]

Jean Mémin, Yulia Mishura, and Esko Valkeila. Inequalities for the moments of Wiener integrals with respect to a fractional Brownian motion. Statist. Probab. Lett., 51(2):197–206, 2001. URL: https://doi.org/10.1016/S0167-7152(00)00157-7, doi:10.1016/S0167-7152(00)00157-7.

[NW81]

C. M. Newman and A. L. Wright. An invariance principle for certain dependent sequences. Ann. Probab., 9(4):671–675, 1981. URL: http://links.jstor.org/sici?sici=0091-1798(198108)9:4<671:AIPFCD>2.0.CO;2-A&origin=MSN.

[New83]

Charles M. Newman. A general central limit theorem for FKG systems. Comm. Math. Phys., 91(1):75–80, 1983. URL: http://projecteuclid.org/euclid.cmp/1103940474.

[NP18]

Constantin P. Niculescu and Lars-Erik Persson. Convex functions and their applications. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, Cham, 2018. ISBN 978-3-319-78336-9; 978-3-319-78337-6. A contemporary approach, Second edition of [ MR2178902]. URL: https://doi.org/10.1007/978-3-319-78337-6, doi:10.1007/978-3-319-78337-6.

[Nob97]

J. M. Noble. Evolution equation with Gaussian potential. Nonlinear Anal., 28(1):103–135, 1997. URL: https://doi.org/10.1016/0362-546X(95)00037-V, doi:10.1016/0362-546X(95)00037-V.

[NVV99]

Ilkka Norros, Esko Valkeila, and Jorma Virtamo. An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions. Bernoulli, 5(4):571–587, 1999. URL: https://doi.org/10.2307/3318691, doi:10.2307/3318691.

[NP09]

Ivan Nourdin and Giovanni Peccati. Stein's method and exact Berry-Esseen asymptotics for functionals of Gaussian fields. Ann. Probab., 37(6):2231–2261, 2009. URL: https://doi.org/10.1214/09-AOP461, doi:10.1214/09-AOP461.

[NP12]

Ivan Nourdin and Giovanni Peccati. Normal approximations with Malliavin calculus. Volume 192 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 2012. ISBN 978-1-107-01777-1. From Stein's method to universality. URL: https://doi.org/10.1017/CBO9781139084659, doi:10.1017/CBO9781139084659.

[NP92]

D. Nualart and É. Pardoux. White noise driven quasilinear SPDEs with reflection. Probab. Theory Related Fields, 93(1):77–89, 1992. URL: https://doi.org/10.1007/BF01195389, doi:10.1007/BF01195389.

[Nua95]

David Nualart. The Malliavin calculus and related topics. Probability and its Applications (New York). Springer-Verlag, New York, 1995. ISBN 0-387-94432-X. URL: https://doi.org/10.1007/978-1-4757-2437-0, doi:10.1007/978-1-4757-2437-0.

[Nua06]

David Nualart. The Malliavin calculus and related topics. Probability and its Applications (New York). Springer-Verlag, Berlin, second edition, 2006. ISBN 978-3-540-28328-7; 3-540-28328-5.

[Nua09]

David Nualart. Malliavin calculus and its applications. Volume 110 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2009. ISBN 978-0-8218-4779-4. URL: https://doi.org/10.1090/cbms/110, doi:10.1090/cbms/110.

[NN18]

David Nualart and Eulalia Nualart. Introduction to Malliavin calculus. Volume 9 of Institute of Mathematical Statistics Textbooks. Cambridge University Press, Cambridge, 2018. ISBN 978-1-107-61198-6; 978-1-107-03912-4. URL: https://doi.org/10.1017/9781139856485, doi:10.1017/9781139856485.

[NQS07]

David Nualart and Lluís Quer-Sardanyons. Existence and smoothness of the density for spatially homogeneous SPDEs. Potential Anal., 27(3):281–299, 2007. URL: https://doi.org/10.1007/s11118-007-9055-3, doi:10.1007/s11118-007-9055-3.

[NV94]

David Nualart and Josep Vives. Smoothness of local time and related Wiener functionals. In Chaos expansions, multiple Wiener-Itô integrals and their applications (Guanajuato, 1992), Probab. Stochastics Ser., pages 317–335. CRC, Boca Raton, FL, 1994.

[NZ20]

David Nualart and Guangqu Zheng. Averaging Gaussian functionals. Electron. J. Probab., 25:Paper No. 48, 54, 2020. URL: https://doi.org/10.1214/20-ejp453, doi:10.1214/20-ejp453.

[Nua13]

Eulalia Nualart. On the density of systems of non-linear spatially homogeneous SPDEs. Stochastics, 85(1):48–70, 2013. URL: https://doi.org/10.1080/17442508.2011.653567, doi:10.1080/17442508.2011.653567.

[Nua18]

Eulalia Nualart. Moment bounds for some fractional stochastic heat equations on the ball. Electron. Commun. Probab., 23:Paper No. 41, 12, 2018. URL: https://doi.org/10.1214/18-ECP147, doi:10.1214/18-ECP147.

[Oco84]

Daniel Ocone. Malliavin's calculus and stochastic integral representations of functionals of diffusion processes. Stochastics, 12(3-4):161–185, 1984. URL: https://doi.org/10.1080/17442508408833299, doi:10.1080/17442508408833299.

[ORSW21]

Tadahiro Oh, Tristan Robert, Philippe Sosoe, and Yuzhao Wang. On the two-dimensional hyperbolic stochastic sine-Gordon equation. Stoch. Partial Differ. Equ. Anal. Comput., 9(1):1–32, 2021. URL: https://doi.org/10.1007/s40072-020-00165-8, doi:10.1007/s40072-020-00165-8.

[OMS09]

Keith Oldham, Jan Myland, and Jerome Spanier. An atlas of functions. Springer, New York, second edition, 2009. ISBN 978-0-387-48806-6. With Equator, the atlas function calculator, With 1 CD-ROM (Windows). URL: https://doi.org/10.1007/978-0-387-48807-3, doi:10.1007/978-0-387-48807-3.

[OLBC10]

Frank W. J. Olver, Daniel W. Lozier, Ronald F. Boisvert, and Charles W. Clark. NIST handbook of mathematical functions. U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge, 2010. ISBN 978-0-521-14063-8. With 1 CD-ROM (Windows, Macintosh and UNIX).

[Ond04]

Martin Ondreját. Uniqueness for stochastic evolution equations in Banach spaces. Dissertationes Math. (Rozprawy Mat.), 426:63, 2004. URL: https://doi.org/10.4064/dm426-0-1, doi:10.4064/dm426-0-1.

[Ond10a]

Martin Ondreját. Stochastic nonlinear wave equations in local Sobolev spaces. Electron. J. Probab., 15:no. 33, 1041–1091, 2010. URL: https://doi.org/10.1214/EJP.v15-789, doi:10.1214/EJP.v15-789.

[Ond10b]

Martin Ondreját. Stochastic wave equation with critical nonlinearities: temporal regularity and uniqueness. J. Differential Equations, 248(7):1579–1602, 2010. URL: https://doi.org/10.1016/j.jde.2009.12.010, doi:10.1016/j.jde.2009.12.010.

[Ors82]

Enzo Orsingher. Randomly forced vibrations of a string. Ann. Inst. H. Poincaré Sect. B (N.S.), 18(4):367–394, 1982.

[Osg98]

W. F. Osgood. Beweis der Existenz einer Lösung der Differentialgleichung $\frac dydx = f\left ( x,y \right )$ ohne Hinzunahme der Cauchy-Lipschitz'schen Bedingung. Monatsh. Math. Phys., 9(1):331–345, 1898. URL: https://doi.org/10.1007/BF01707876, doi:10.1007/BF01707876.

[OW07]

El Maati Ouhabaz and Feng-Yu Wang. Sharp estimates for intrinsic ultracontractivity on $C^1,\alpha $-domains. Manuscripta Math., 122(2):229–244, 2007. URL: https://doi.org/10.1007/s00229-006-0065-z, doi:10.1007/s00229-006-0065-z.

[Ouv76]

Jean-Yves Ouvrard. Représentation de martingales vectorielles de carré intégrable à valeurs dans des espaces de Hilbert réels séparables. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 33(3):195–208, 1975/76. URL: https://doi.org/10.1007/BF00534964, doi:10.1007/BF00534964.

[PZ93]

Étienne Pardoux and Tu Sheng Zhang. Absolute continuity of the law of the solution of a parabolic SPDE. J. Funct. Anal., 112(2):447–458, 1993. URL: https://doi.org/10.1006/jfan.1993.1040, doi:10.1006/jfan.1993.1040.

[Per02]

Edwin Perkins. Dawson-Watanabe superprocesses and measure-valued diffusions. In Lectures on probability theory and statistics (Saint-Flour, 1999), volume 1781 of Lecture Notes in Math., pages 125–324. Springer, Berlin, 2002.

[PL11]

Jennifer N. Perkins and Tyler M. Lach. Viscoelasticity : theories, types and models. Materials science and technologies series. Nova Science Publishers, 2011. URL: https://cir.nii.ac.jp/crid/1130282268654343936.

[Pes02]

Szymon Peszat. The Cauchy problem for a nonlinear stochastic wave equation in any dimension. J. Evol. Equ., 2(3):383–394, 2002. URL: https://doi.org/10.1007/PL00013197, doi:10.1007/PL00013197.

[PS98]

Szymon Peszat and Jan Seidler. Maximal inequalities and space-time regularity of stochastic convolutions. Math. Bohem., 123(1):7–32, 1998.

[PZ97]

Szymon Peszat and Jerzy Zabczyk. Stochastic evolution equations with a spatially homogeneous Wiener process. Stochastic Process. Appl., 72(2):187–204, 1997. URL: https://doi.org/10.1016/S0304-4149(97)00089-6, doi:10.1016/S0304-4149(97)00089-6.

[PZ00]

Szymon Peszat and Jerzy Zabczyk. Nonlinear stochastic wave and heat equations. Probab. Theory Related Fields, 116(3):421–443, 2000. URL: https://doi.org/10.1007/s004400050257, doi:10.1007/s004400050257.

[PT01]

Vladas Pipiras and Murad S. Taqqu. Are classes of deterministic integrands for fractional Brownian motion on an interval complete? Bernoulli, 7(6):873–897, 2001. URL: https://doi.org/10.2307/3318624, doi:10.2307/3318624.

[Pit82]

Loren D. Pitt. Positively correlated normal variables are associated. Ann. Probab., 10(2):496–499, 1982. URL: http://links.jstor.org/sici?sici=0091-1798(198205)10:2<496:PCNVAA>2.0.CO;2-Q&origin=MSN.

[Pod99]

Igor Podlubny. Fractional differential equations. Volume 198 of Mathematics in Science and Engineering. Academic Press, Inc., San Diego, CA, 1999. ISBN 0-12-558840-2. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications.

[Pol02]

Andrei D. Polyanin. Handbook of linear partial differential equations for engineers and scientists. Chapman & Hall/CRC, Boca Raton, FL, 2002. ISBN 1-58488-299-9.

[PN16]

Andrei D. Polyanin and Vladimir E. Nazaikinskii. Handbook of linear partial differential equations for engineers and scientists. CRC Press, Boca Raton, FL, second edition, 2016. ISBN 978-1-4665-8145-6. URL: https://doi.org/10.1201/b19056, doi:10.1201/b19056.

[PT07]

Jan Pospíšil and Roger Tribe. Parameter estimates and exact variations for stochastic heat equations driven by space-time white noise. Stoch. Anal. Appl., 25(3):593–611, 2007. URL: https://doi.org/10.1080/07362990701282849, doi:10.1080/07362990701282849.

[PR12]

B. L. S. Prakasa Rao. Associated sequences, demimartingales and nonparametric inference. Probability and its Applications. Birkhäuser/Springer, Basel, 2012. ISBN 978-3-0348-0239-0; 978-3-0348-0240-6. URL: https://doi.org/10.1007/978-3-0348-0240-6, doi:10.1007/978-3-0348-0240-6.

[PBM90]

A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev. Integrals and series. Vol. 3. Gordon and Breach Science Publishers, New York, 1990. ISBN 2-88124-682-6. More special functions, Translated from the Russian by G. G. Gould.

[PR07]

Claudia Prévôt and Michael Röckner. A concise course on stochastic partial differential equations. Volume 1905 of Lecture Notes in Mathematics. Springer, Berlin, 2007. ISBN 978-3-540-70780-6; 3-540-70780-8.

[Psk09]

A. V. Pskhu. The fundamental solution of a diffusion-wave equation of fractional order. Izv. Ross. Akad. Nauk Ser. Mat., 73(2):141–182, 2009. URL: https://doi.org/10.1070/IM2009v073n02ABEH002450, doi:10.1070/IM2009v073n02ABEH002450.

[QSSS04]

Lluís Quer-Sardanyons and Marta Sanz-Solé. A stochastic wave equation in dimension 3: smoothness of the law. Bernoulli, 10(1):165–186, 2004. URL: https://doi.org/10.3150/bj/1077544607, doi:10.3150/bj/1077544607.

[QS19]

Pavol Quittner and Philippe Souplet. Superlinear parabolic problems. Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser/Springer, Cham, 2019. ISBN 978-3-030-18220-5; 978-3-030-18222-9. Blow-up, global existence and steady states, Second edition of [ MR2346798]. URL: https://doi.org/10.1007/978-3-030-18222-9, doi:10.1007/978-3-030-18222-9.

[Rei89]

Mark Reimers. One-dimensional stochastic partial differential equations and the branching measure diffusion. Probab. Theory Related Fields, 81(3):319–340, 1989. URL: https://doi.org/10.1007/BF00340057, doi:10.1007/BF00340057.

[RY91]

Daniel Revuz and Marc Yor. Continuous martingales and Brownian motion. Volume 293 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1991. ISBN 3-540-52167-4. URL: https://doi.org/10.1007/978-3-662-21726-9, doi:10.1007/978-3-662-21726-9.

[RY99]

Daniel Revuz and Marc Yor. Continuous martingales and Brownian motion. Volume 293 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, third edition, 1999. ISBN 3-540-64325-7. URL: https://doi.org/10.1007/978-3-662-06400-9, doi:10.1007/978-3-662-06400-9.

[Ria13]

Lotfi Riahi. Estimates for Dirichlet heat kernels, intrinsic ultracontractivity and expected exit time on Lipschitz domains. Commun. Math. Anal., 15(1):115–130, 2013.

[RW00]

L. C. G. Rogers and David Williams. Diffusions, Markov processes, and martingales. Vol. 2. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 2000. ISBN 0-521-77593-0. Itô calculus, Reprint of the second (1994) edition. URL: https://doi.org/10.1017/CBO9781107590120, doi:10.1017/CBO9781107590120.

[Ros87]

Jay Rosen. The intersection local time of fractional Brownian motion in the plane. J. Multivariate Anal., 23(1):37–46, 1987. URL: https://doi.org/10.1016/0047-259X(87)90176-X, doi:10.1016/0047-259X(87)90176-X.

[Ros72]

M. Rosenblatt. Central limit theorem for stationary processes. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. II: Probability theory, 551–561. Univ. California Press, Berkeley, CA, 1972.

[Rud91]

Walter Rudin. Functional analysis. International Series in Pure and Applied Mathematics. McGraw-Hill, Inc., New York, second edition, 1991. ISBN 0-07-054236-8.

[Sal21]

Michael Salins. Global solutions to the stochastic heat equation with superlinear accretive reaction term and superlinear multiplicative noise term on a bounded spatial domain. Preprint arXiv:2110.10130, October 2021. URL: https://www.arxiv.org/abs/2110.10130.

[Sal22a]

Michael Salins. Existence and uniqueness of global solutions to the stochastic heat equation with superlinear drift on an unbounded spatial domain. Stoch. Dyn., 22(5):Paper No. 2250014, 30, 2022. URL: https://doi.org/10.1142/S0219493722500149, doi:10.1142/S0219493722500149.

[Sal22b]

Michael Salins. Global solutions for the stochastic reaction-diffusion equation with super-linear multiplicative noise and strong dissipativity. Electron. J. Probab., 27:Paper No. 12, 17, 2022. URL: https://doi.org/10.1214/22-ejp740, doi:10.1214/22-ejp740.

[Sal22c]

Michael Salins. Global solutions to the stochastic reaction-diffusion equation with superlinear accretive reaction term and superlinear multiplicative noise term on a bounded spatial domain. Trans. Amer. Math. Soc., 375(11):8083–8099, 2022. URL: https://doi.org/10.1090/tran/8763, doi:10.1090/tran/8763.

[SC92]

Laurent Saloff-Coste. A note on Poincaré, Sobolev, and Harnack inequalities. Internat. Math. Res. Notices, pages 27–38, 1992. URL: https://doi.org/10.1155/S1073792892000047, doi:10.1155/S1073792892000047.

[SC10]

Laurent Saloff-Coste. The heat kernel and its estimates. In Probabilistic approach to geometry, volume 57 of Adv. Stud. Pure Math., pages 405–436. Math. Soc. Japan, Tokyo, 2010. URL: https://doi.org/10.2969/aspm/05710405, doi:10.2969/aspm/05710405.

[SKM93]

Stefan G. Samko, Anatoly A. Kilbas, and Oleg I. Marichev. Fractional integrals and derivatives. Gordon and Breach Science Publishers, Yverdon, 1993. ISBN 2-88124-864-0. Theory and applications, Edited and with a foreword by S. M. Nikolskiui, Translated from the 1987 Russian original, Revised by the authors.

[SSS00]

Marta Sanz-Solé and Mònica Sarrà. Path properties of a class of Gaussian processes with applications to spde's. In Stochastic processes, physics and geometry: new interplays, I (Leipzig, 1999), volume 28 of CMS Conf. Proc., pages 303–316. Amer. Math. Soc., Providence, RI, 2000. URL: https://doi.org/10.1016/s0304-4149(98)00092-1, doi:10.1016/s0304-4149(98)00092-1.

[SSS02]

Marta Sanz-Solé and Mònica Sarrà. Hölder continuity for the stochastic heat equation with spatially correlated noise. In Seminar on Stochastic Analysis, Random Fields and Applications, III (Ascona, 1999), volume 52 of Progr. Probab., pages 259–268. Birkhäuser, Basel, 2002.

[SSS15]

Marta Sanz-Solé and André Süß. Absolute continuity for SPDEs with irregular fundamental solution. Electron. Commun. Probab., 20:no. 14, 11, 2015. URL: https://doi.org/10.1214/ECP.v20-3831, doi:10.1214/ECP.v20-3831.

[Sat13]

Ken-iti Sato. Lévy processes and infinitely divisible distributions. Volume 68 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2013. ISBN 978-1-107-65649-9. Translated from the 1990 Japanese original, Revised edition of the 1999 English translation.

[SSV10]

René L. Schilling, Renming Song, and Zoran Vondraček. Bernstein functions. Volume 37 of De Gruyter Studies in Mathematics. Walter de Gruyter & Co., Berlin, 2010. ISBN 978-3-11-021530-4. Theory and applications.

[Sch96]

W. R. Schneider. Completely monotone generalized Mittag-Leffler functions. Exposition. Math., 14(1):3–16, 1996.

[Sei93]

Jan Seidler. Da Prato-Zabczyk's maximal inequality revisited. I. Math. Bohem., 118(1):67–106, 1993.

[Sei10]

Jan Seidler. Exponential estimates for stochastic convolutions in 2-smooth Banach spaces. Electron. J. Probab., 15:no. 50, 1556–1573, 2010. URL: https://doi.org/10.1214/EJP.v15-808, doi:10.1214/EJP.v15-808.

[SZ21]

Shijie Shang and Tusheng Zhang. Global well-posedness to stochastic reaction-diffusion equations on the real line ℝ with superlinear drifts driven by multiplicative space-time white noise. Preprint arXiv:2106.02879, June 2021. URL: http://arXiv.org/abs/2106.02879.

[SZ22]

Shijie Shang and Tusheng Zhang. Stochastic heat equations with logarithmic nonlinearity. J. Differential Equations, 313:85–121, 2022. URL: https://doi.org/10.1016/j.jde.2021.12.033, doi:10.1016/j.jde.2021.12.033.

[Shi92]

Tokuzo Shiga. Ergodic theorems and exponential decay of sample paths for certain interacting diffusion systems. Osaka J. Math., 29(4):789–807, 1992. URL: http://projecteuclid.org/euclid.ojm/1200784090.

[Shi94]

Tokuzo Shiga. Two contrasting properties of solutions for one-dimensional stochastic partial differential equations. Canad. J. Math., 46(2):415–437, 1994. URL: https://doi.org/10.4153/CJM-1994-022-8, doi:10.4153/CJM-1994-022-8.

[SS80]

Tokuzo Shiga and Akinobu Shimizu. Infinite-dimensional stochastic differential equations and their applications. J. Math. Kyoto Univ., 20(3):395–416, 1980. URL: https://doi.org/10.1215/kjm/1250522207, doi:10.1215/kjm/1250522207.

[Sla19]

Gordon Slade. Self-avoiding walk, spin systems and renormalization. Proc. A., 475(2221):20180549, 21, 2019. URL: https://doi.org/10.1098/rspa.2018.0549, doi:10.1098/rspa.2018.0549.

[SSX20]

Jian Song, Xiaoming Song, and Fangjun Xu. Fractional stochastic wave equation driven by a Gaussian noise rough in space. Bernoulli, 26(4):2699–2726, 2020. URL: https://doi.org/10.3150/20-BEJ1204, doi:10.3150/20-BEJ1204.

[Spi81]

Frank Spitzer. Infinite systems with locally interacting components. Ann. Probab., 9(3):349–364, 1981. URL: http://links.jstor.org/sici?sici=0091-1798(198106)9:3<349:ISWLIC>2.0.CO;2-P&origin=MSN.

[Ste70]

Elias M. Stein. Singular integrals and differentiability properties of functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton, N.J., 1970.

[SW71]

Elias M. Stein and Guido Weiss. Introduction to Fourier analysis on Euclidean spaces. Princeton Mathematical Series, No. 32. Princeton University Press, Princeton, N.J., 1971.

[Ste99]

Michael L. Stein. Interpolation of spatial data. Springer Series in Statistics. Springer-Verlag, New York, 1999. ISBN 0-387-98629-4. Some theory for Kriging. URL: https://doi.org/10.1007/978-1-4612-1494-6, doi:10.1007/978-1-4612-1494-6.

[SC74]

V. N. Sudakov and B. S. Cirelson. Extremal properties of half-spaces for spherically invariant measures. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 41:14–24, 165, 1974. Problems in the theory of probability distributions, II.

[Tal01]

Erik Talvila. Necessary and sufficient conditions for differentiating under the integral sign. Amer. Math. Monthly, 108(6):544–548, 2001. URL: https://doi.org/10.2307/2695709, doi:10.2307/2695709.

[TZ98a]

Gianmario Tessitore and Jerzy Zabczyk. Invariant measures for stochastic heat equations. Probab. Math. Statist., 18(2, Acta Univ. Wratislav. No. 2111):271–287, 1998.

[TZ98b]

Gianmario Tessitore and Jerzy Zabczyk. Strict positivity for stochastic heat equations. Stochastic Process. Appl., 77(1):83–98, 1998. URL: https://doi.org/10.1016/S0304-4149(98)00024-6, doi:10.1016/S0304-4149(98)00024-6.

[Treves75]

François Trèves. Basic linear partial differential equations. Pure and Applied Mathematics, Vol. 62. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975.

[UZ99]

Vladimir V. Uchaikin and Vladimir M. Zolotarev. Chance and stability. Modern Probability and Statistics. VSP, Utrecht, 1999. ISBN 90-6764-301-7. Stable distributions and their applications, With a foreword by V. Yu. Korolev and Zolotarev. URL: https://doi.org/10.1515/9783110935974, doi:10.1515/9783110935974.

[US06]

Sabir Umarov and Erkin Saydamatov. A fractional analog of the Duhamel principle. Fract. Calc. Appl. Anal., 9(1):57–70, 2006.

[VR59]

V. A. Volkonskiui and Yu. A. Rozanov. Some limit theorems for random functions. I. Theor. Probability Appl., 4:178–197, 1959. URL: https://doi.org/10.1137/1104015, doi:10.1137/1104015.

[Wal86]

John B. Walsh. An introduction to stochastic partial differential equations. In École d'été de probabilités de Saint-Flour, XIV—1984, volume 1180 of Lecture Notes in Math., pages 265–439. Springer, Berlin, 1986. URL: https://doi.org/10.1007/BFb0074920, doi:10.1007/BFb0074920.

[Wat95]

G. N. Watson. A treatise on the theory of Bessel functions. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1995. ISBN 0-521-48391-3. Reprint of the second (1944) edition.

[Wid41]

David Vernon Widder. The Laplace Transform. Princeton Mathematical Series, vol. 6. Princeton University Press, Princeton, N. J., 1941.

[Wri40]

E. M. Wright. The generalized Bessel function of order greater than one. Quart. J. Math. Oxford Ser., 11:36–48, 1940. URL: https://doi.org/10.1093/qmath/os-11.1.36, doi:10.1093/qmath/os-11.1.36.

[Wri33]

E. Maitland Wright. On the Coefficients of Power Series Having Exponential Singularities. J. London Math. Soc., 8(1):71–79, 1933. URL: https://doi.org/10.1112/jlms/s1-8.1.71, doi:10.1112/jlms/s1-8.1.71.

[Wri35]

E. Maitland Wright. The Asymptotic Expansion of the Generalized Bessel Function. Proc. London Math. Soc. (2), 38:257–270, 1935. URL: https://doi.org/10.1112/plms/s2-38.1.257, doi:10.1112/plms/s2-38.1.257.

[Xio13]

Jie Xiong. Three classes of nonlinear stochastic partial differential equations. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2013. ISBN 978-981-4452-35-9. URL: https://doi.org/10.1142/8728, doi:10.1142/8728.

[YZ14]

Juan Yang and Tusheng Zhang. Existence and uniqueness of invariant measures for SPDEs with two reflecting walls. J. Theoret. Probab., 27(3):863–877, 2014. URL: https://doi.org/10.1007/s10959-012-0448-x, doi:10.1007/s10959-012-0448-x.

[Yos95]

Kosaku Yosida. Functional analysis. Classics in Mathematics. Springer-Verlag, Berlin, 1995. ISBN 3-540-58654-7. Reprint of the sixth (1980) edition. URL: https://doi.org/10.1007/978-3-642-61859-8, doi:10.1007/978-3-642-61859-8.

[ZMRS87]

Ya. B. Zeldovich, S. A. Molchanov, A. A. Ruzmauikin, and D. D. Sokoloff. Self-excitation of a nonlinear scalar field in a random medium. Proc. Nat. Acad. Sci. U.S.A., 84(18):6323–6325, 1987. URL: https://doi.org/10.1073/pnas.84.18.6323, doi:10.1073/pnas.84.18.6323.

[ZMRS88]

Ya. B. Zeldovich, S. A. Molchanov, A. A. Ruzmauikin, and D. D. Sokoloff. Intermittency, diffusion and generation in a nonstationary random medium. In Mathematical physics reviews, Vol. 7, volume 7 of Soviet Sci. Rev. Sect. C: Math. Phys. Rev., pages 3–110. Harwood Academic Publ., Chur, 1988.

[ZRS90]

Ya. B. Zeldovich, A. A. Ruzmauikin, and D. D. Sokoloff. The almighty chance. Volume 20 of World Scientific Lecture Notes in Physics. World Scientific Publishing Co., Inc., River Edge, NJ, 1990. ISBN 9971-50-916-4; 9971-50-917-2. Translated from the Russian by Anvar Shukurov. URL: https://doi.org/10.1142/9789812799197, doi:10.1142/9789812799197.

[Zha12]

Tusheng Zhang. Large deviations for invariant measures of SPDEs with two reflecting walls. Stochastic Process. Appl., 122(10):3425–3444, 2012. URL: https://doi.org/10.1016/j.spa.2012.06.003, doi:10.1016/j.spa.2012.06.003.

[Zha10]

Xicheng Zhang. Stochastic Volterra equations in Banach spaces and stochastic partial differential equation. J. Funct. Anal., 258(4):1361–1425, 2010. URL: https://doi.org/10.1016/j.jfa.2009.11.006, doi:10.1016/j.jfa.2009.11.006.

[Zol86]

V. M. Zolotarev. One-dimensional stable distributions. Volume 65 of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI, 1986. ISBN 0-8218-4519-5. Translated from the Russian by H. H. McFaden, Translation edited by Ben Silver. URL: https://doi.org/10.1090/mmono/065, doi:10.1090/mmono/065.