8. chen.khoshnevisan.ea:17:boundedness

8. chen.khoshnevisan.ea:17:boundedness#

A boundedness trichotomy for the stochastic heat equation

Le Chen, Davar Khoshnevisan, and Kunwoo Kim

Abstract: We consider the stochastic heat equation with a multiplicative white noise forcing term under standard ‘’intermitency conditions’’. The main finding of this paper is that, under mild regularity hypotheses, the a.s.-boundedness of the solution \(x\mapsto u(t\,,x)\) can be characterized generically by the decay rate, at \(\pm\infty\), of the initial function \(u_0\). More specifically, we prove that there are three generic boundedness regimes, depending on the numerical value of

\[\Lambda := \lim_{|x|\to\infty} |\log u_0(x)|/(\log|x|)^{2/3}.\]

MSC 2010 subject classifications: Primary 60H15. Secondary 35R60.

Keywords: stochastic heat equation.

Download

[CKK17] Chen, Le, Khoshnevisan, Davar & Kim, Kunwoo (2017) ‘A boundedness trichotomy for the stochastic heat equation’, Ann. Inst. Henri Poincar’e Probab. Stat. 53, 1991–2004. <https://doi.org/10.1214/16-AIHP780>

@article{chen.khoshnevisan.ea:17:boundedness,
  author        = {Chen, Le and Khoshnevisan, Davar and Kim, Kunwoo},
  title         = {A boundedness trichotomy for the stochastic heat equation},
  journal       = {Ann. Inst. Henri Poincar\'{e} Probab. Stat.},
  fjournal      = {Annales de l'Institut Henri Poincar\'{e} Probabilit\'{e}s et Statistiques},
  volume        = {53},
  year          = {2017},
  number        = {4},
  pages         = {1991--2004},
  issn          = {0246-0203},
  mrclass       = {60H15 (35R60)},
  mrnumber      = {3729644},
  mrreviewer    = {Paul Andr\'{e} Razafimandimby},
  doi           = {10.1214/16-AIHP780},
  url           = {https://doi.org/10.1214/16-AIHP780}
}

References: Chen and Dalang [CD14a]; Chen and Dalang [CD15b]; Conus and Khoshnevisan [CK12]; Dareiotis and Gerencsér [DG15]; Foondun and Khoshnevisan [FK09]; Foondun and Khoshnevisan [FK10]; Joseph et al. [JKM17]; Khoshnevisan [Kho14]; Mueller [Mue91b]; Mueller [Mue09]; Shiga [Shi92]; Walsh [Wal86];

This page