Publications

Refereed Publications

2019

  • M. Menati, E. Thomas, and M.J. Kushner, “Filamentation of capacitively coupled plasmas in large magnetic fields”,Phys. Plasmas 26, 063515 (2019).
  • L. Couëdel, D. Artis, M.P. Khanal, C. Pardanaud, S. Coussan, S. LeBlanc, T. Hall, E. Thomas Jr, U. Konopka, M. Park, and C. Arnas, “Influence of magnetic field strength on nanoparticle growth in a capacitively-coupled radio-frequency Ar/C2H2 discharge”, Plasma Res. Express 1, 015012 (2019).


2018

  •  T. Hall, E. Thomas Jr, K. Avinash, R. Merlino, and M. Rosenberg, “Methods for the characterization of imposed, ordered structures in MDPX”, Phys. Plasmas 25, 103702 (2018).


2017

  •  E. Thomas, Jr., “Modeling of particle transport in the Magnetized Dusty Plasma Experiment”, J. Plasma and Fusion Research (Japan), 93, 586 (2017).
  • S. Jaiswal, T. Hall, S. LeBlanc, R. Mukherjee, and E. Thomas, Jr., “Effect of magnetic field on the phase transition in a dusty plasma”, Phys. Plasmas, 24, 113703 (2017).  [Also a featured “Scilight” by the American Institute of Physics, “Magnetic fields melt dusty plasma crystals”, M. Woo, Scilight, V.2017, No. 20]
  • M. Puttscher, A. Melzer, U. Konopka, S. LeBlanc, B. Lynch, and E. Thomas, Jr., “Vertical oscillations of dust particles in a strongly magnetized plasma sheath induced by horizontal laser manipulation”, Phys. Plasmas, 24, 013701 (2017)


2016

  •  E. Thomas Jr, U. Konopka, R. L. Merlino, and M. Rosenberg, “Initial measurements of two- and three-dimensional ordering, waves, and plasma filamentation in the Magnetized Dusty Plasma Experiment,” Phys. Plasmas, 23, 055701 (2016).
  • T. Hall and E. Thomas, Jr., “A Study of Ion Drag for Ground and Microgravity Dusty Plasma Experiments”, IEEE Trans. Plasma Sci., 44, 463 (2016).
  • B. Lynch, U. Konopka, and E. Thomas, Jr., “Real-Time Particle Tracking in Complex Plasmas”, IEEE Trans. Plasma Sci., 44, 553 (2016).


2015

  • E. Thomas Jr, U. Konopka, B. Lynch, S. Adams, S. LeBlanc, R.L. Merlino, and M. Rosenberg, “Quasi-discrete particle motion in an externally imposed, ordered structure in a dusty plasma at high magnetic field”, Phys. Plasmas, 22, 113708 (2015).
  • I. Arnold, E. Thomas, S. D. Loch, S. Abdel-Naby, and C. P. Ballance, “The dielectronic recombination of Ar+ - Ar4+,” J. Phys B: At. Mol. Opt. Phys., 48, 175005 (2015).
  • E. Thomas, Jr., B. Lynch, U. Konopka, R. L. Merlino, M. Rosenberg, “Observations of imposed ordered structures in a dusty plasma at high magnetic field”, Phys. Plasmas,  22, 030701 (2015).
  • E. Thomas, Jr., U. Konopka, D. Artis, B. Lynch, S. LeBlanc, S. Adams, R. L. Merlino, and M. Rosenberg, “The Magnetized Dusty Plasma Experiment”, J. Plasma Phys., 81, 345810206 (2015).


2014

  • A. M. DuBois, E. Thomas Jr, W. E. Amatucci, and G. Ganguli, “Experimental characterization of broadband electrostatic noise due to plasma compression,” J. Geophys. Res. Space Physics, 119, 5624 (2014).
  • A. M. DuBois, E. Thomas Jr, W. E. Amatucci, and G. Ganguli, “Density gradient effects on transverse shear driven lower hybrid waves,” Phys. Plasmas, 21, no. 6, 062117, (2014).
  • E. Thomas, Jr., A. M. DuBois, B. Lynch, S. Adams, R. Fisher, D. Artis, S. Leblanc, U. Konopka, R. L. Merlino, and M. Rosenberg, “Preliminary characteristics of magnetic field and plasma performance in the Magnetized Dusty Plasma Experiment (MDPX)”, J. Plasma Phys., 80, 803 (2014).


2013

  • A. M. DuBois, E. Thomas, W. E. Amatucci, and G. Ganguli, “Plasma Response to a Varying Degree of Stress,” Phys. Rev. Lett.111, 145002, (2013).
  • R. Fisher, K. Avinash, E. Thomas, R. Merlino, and V. Gupta, “Thermal energy density of dust in dusty plasmas: Experiment and theory,” Phys. Rev. E, vol. 88, 031101, (2013).
  • R. K. Fisher and E. E. Thomas, “Weakly Coupled Dusty Plasma With a High Dust Temperature and Low Thermal Energy Density,” IEEE Trans. Plasma Sci., 41, 784 (2013).
  • E. Thomas, R. L. Merlino, and M. Rosenberg, “Design Criteria for the Magnetized Dusty Plasma eXperiment,” IEEE Trans. Plasma Sci.41, 811 (2013).
  • A. M. DuBois, I. Arnold, E. Thomas, E. Tejero, and W. E. Amatucci, “Electron-ion hybrid instability experiment upgrades to the Auburn Linear Experiment for Instability Studies,” Rev. Sci. Instrum., 84, 043503 (2013).


2012

  • E. Thomas, Jr., R. L. Merlino, and M. Rosenberg, Magnetized dusty plasmas:  the next frontier for complex plasma research, Plasma Phys. Control. Fusion, 54, 124034 (2012).    

  • Ross Fisher and Edward Thomas, Jr., Quantitative comparison of the isotropic and anisotropic Maxwellian velocity space distribution function models in a dusty plasma, Phys. Rev. E, 86, 066403 (2012).    

  • Jeremiah Williams, Edward Thomas, Jr., Lenaic Couëdel, Alexei Ivlev, Sergey Zhdanov, Vladimir Nosenko, Hubertus Thomas, and Gregor Morfill, Kinetics of the melting front in two-dimensional plasma crystals: Complementary analysis with the particle image and particle tracking velocimetries, Phys. Rev. E, 86, 046401 (2012). 
       
  • A. M. DuBois, A. C. Eadon and E. Thomas, Jr., Suppression of drift waves in a linear magnetized plasma column, Phys. Plasmas, 19, 072102 (2012). 

2011

  • Ross Fisher and Edward Thomas, Jr., Observation and model of an ellipsoidally symmetric velocity space distribution in a weakly-coupled dusty plasma, Phys. Plasmas, 18, 113701 (2011).       

  • A. C. Eadon, E. Tejero, A. DuBois, and E. Thomas, Jr., Upgrades to the Auburn Linear Experiment for Instability Studies,Rev. Sci. Instrum. 82, 063511 (2011).

  • E. M. Tejero, W. E. Amatucci, G. Ganguli, C. D. Cothran, C. Crabtree, and E. Thomas, Jr., Spontaneous Electromagnetic Emission from a Strongly Localized Plasma Flow, Phys. Rev. Lett., 106, 185001 (2011).

2010

  • Robert Jefferson, Mark Cianciosa, and Edward Thomas, Jr., Simulations of one- and two-dimensional complex plasmas using a modular, object-oriented code, Phys. Plasmas, 17, 113704 (2010).

  • Edward Thomas, Jr., Driven dust acoustic waves with thermal effects - comparison of experiment to fluid theory, Phys. Plasmas, 17, 043701 (2010).

  • Edward Thomas, Jr., Christoph Räth, and Jeremiah Williams, Benchmarking particle image velocimetry (PIV) measurements applied to dusty plasmas, IEEE Trans. Plasma Sci., 38, 892 (2010).

  • Ross Fisher and Edward Thomas, Jr., Thermal properties of a dusty plasma in the presence of driven dust acoustic waves, IEEE Trans. Plasma Sci., 38, 833 (2010).

2009

  • Edward Thomas, Jr., Dust clouds in dc-generated dusty plasmas: transport, waves, and three-dimensional effects, Contr. Plasma Phys., 49, 316 (2009) [Review article].

2008

  • Marlene Rosenberg, Edward Thomas, Jr., and Robert L. Merlino, A note on dust wave excitation in a plasma with warm dust: Comparison with experiment, Phys. Plasmas 15, 073701 (2008).

  • Jeremiah Williams, Edward Thomas, Jr., and Lydia Marcus, Observations of vertically propagating driven dust acoustic waves: finite temperature effects, Phys. Plasmas 15, 043704 (2008).

2007

  • Edward Thomas, Jr., Ross Fisher, and Robert L. Merlino, Observations of dust acoustic waves driven at high frequencies: Finite dust temperature effects and wave interference, Phys. Plasmas, 14, 123701 (2007).

  • Jeremiah Williams and Edward Thomas, Jr., Measurement of the kinetic dust temperature of a weakly coupled dusty plasma, Phys. Plasmas, 14, 063702 (2007).

  • Zachary Aldewereld and Edward Thomas, Jr., Observation of one-dimensional flows in a DC glow discharge dusty plasma, IEEE Trans. Plasma Sci., 35, 309 (2007).

  • Jeremiah Williams and Edward Thomas, Jr., Measurement of the kinetic dust temperature of a weakly coupled dusty plasma, IEEE Trans. Plasma Sci., 35, 303 (2007).

2006

  • E. Thomas, Jr., Measurements of a spatially growing dust acoustic wave in a dc glow discharge plasma, Phys. Plasmas, 13, 042105 (2006).

  • E. Thomas, Jr. and J. Williams*, Applications of stereoscopic particle image velocimetry: dust acoustic waves and velocity space distribution functions, Phys. Plasmas, 13 055702 (2006).

  • J. Williams* and E. Thomas, Jr., Initial measurement of the kinetic dust temperature of a weakly-coupled dusty plasma, Phys. Plasmas. 13, 063509 (2006).

2005

  • "Experimental Measurements of Velocity Dissipation and Neutral-Drag Effects during the Formation of a Dusty Plasma", Edward Thomas, Jr. and Jeremiah Williams, Phys. Rev. Letters95, 055001 (2005)

  • "Suppression of low frequency plasma instabilities in a magnetized plasma column", Edward Thomas, Jr., Ashley Eadon, and Edwynn A. Wallace, Phys. Plasmas, 12, 042109 (2005)

2004

  • "Design and initial operation of ALEXIS: a new plasma experiment for studying shear driven flows", Edwynn Wallace, Edward Thomas, Jr., Ashley Eadon, and Jon David Jackson, Review of Scientific Instruments, 75, 5160 (2004).

  • "Probe induced voids in a dusty plasma", E. Thomas, Jr., K. Avinash, and R. L Merlino, Phys. Plasmas11, 1770 (2004).

  • "Application of stereoscopic particle image velocimetry to studies of transport in a dusty (complex) plasma", Edward Thomas, Jr., Jeremiah D. Williams, and Jennifer Silver, Phys. Plasmas11, L37 (2004)

  • "Controlled interactions of two micropaticle clouds in a dc glow discharge dusty (complex) plasma", E. Thomas, Jr.,New Journal of Physics5, 45.1-13, (2003).

2003

2002


2001

  • "Dust particle motion in the vicinity of dust acoustic waves", Edward Thomas, Jr. and Robert L. Merlino, IEEE Trans. Plasma Science29, 152 (2001).

  • "Observations of high speed particle streams in dc glow discharge dusty plasmas", Edward Thomas, Jr., Physics of Plasmas8, 329 (2001).

  • "Direct measurements of particle transport in dc glow discharge dusty plasmas", Edward Thomas, Jr., Physica ScriptaT89, 20 (2001).

2000

  • "Charging of silica particles in an argon dusty plasma", Edward Thomas, Jr. and Michael Watson, Physics of Plasmas7, 3194 (2000).

1999



© Auburn University MPRL 2019 - Pages created with Sandvox